Exercises Singularity Theory

1. (1 point) Show that $x^{p}+y^{p}$ and $x^{p}+y^{p}+x^{2} y^{2}(p \geq 5)$ are not right equivalent in \mathcal{R}_{2}.
2. (2 points) Let $f=x^{3}+y^{3}+z^{3}+3 \cdot c \cdot x y z \in \mathcal{R}_{3}, c \in \mathbb{R}, c \neq 0,-1$.
(a) Compute the Milnor number and determinacy of f.
(b) Explain why $c=-1$ is special.
3. (4 points) Let $f=x^{n}$ and $F(x, t):=f_{t}(x):=x^{n}+t x^{n+1}$.
(a) Determine a smooth function $H(t, x): I \times(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ (where $I \subset \mathbb{R}$ is an intervall containing 0), such that $h_{t}(x):=H(-, t)$ for all $t \in(-\epsilon, \epsilon)$ is a coordinate change (i.e., a local diffeomorphism at $0 \in \mathbb{R}$), and such that we have $f \circ h_{t}=f_{t}$.
(b) Find a smooth function $\xi(x, t)$ which satisfies the following equation

$$
\xi(x, t) \cdot \partial_{x} F(X, t)+\partial_{t} F_{t}(x, t)=0
$$

(c) Write down explicitly the following differential equation.

$$
\partial_{t} H(x, t)=\xi(H(X, t), t)
$$

(d) Show that a solution $H(x, t)$ of the equation $\partial_{t} H(x, t)=\xi(H(X, t), t)$ satisfies the identity

$$
\frac{d F(H(x, t), t)}{d t}=0
$$

4. (3 points) Let $f=x^{3}+x y^{p} \in \mathcal{R}_{2}, p>2$. Find the smallest integer k such that $\mathbf{m}^{k} \subset \mathbf{m} J_{f}$. (Remark: This calculation is the main step towards establishing the precise value of the determinacy of f. Namely, one has the following theorem: If f is a germ and k is the smallest integer such that $\mathbf{m}^{k} \subset \mathbf{m} J_{f}$ then the determinacy of f is either k or $k-1$.)
