Exercises Singularity Theory

1. (4 points) Do the following germs have isolated singularities ? If yes, determine their Milnor number and the smallest number k such that f is k-determined (i.e., their determinacy).
(a) $f=x^{4}+y^{3} \in \mathcal{R}_{2}$
(b) $f=x^{3}+y^{5}+x \in \mathcal{R}_{2}$.
(c) $f=x^{2}-y^{2} \in \mathcal{R}_{3}$
2. (2 points) Compute the Milnor number of the following germs.
(a) $f=x^{3}+x y^{p} \in \mathcal{R}_{2}, p>2$,
(b) $f=x^{p}+y^{p}+x^{2} y^{2} \in \mathcal{R}_{2}, p>3$,
(c) $f=x^{2}+y^{2}+2 x y \in \mathcal{R}_{2}$.
3. (2 points) Let $g(x, y, z)=z^{p}+f(x, y) \in \mathcal{R}_{3}$ with $f \in \mathcal{R}_{2}, p \in \mathbb{N}$. Determine a formula for the Milnor number of g in terms of the Milnor number of f.
4. (2 points) Show that the following two germs f and g are not right equivalent as elements of \mathcal{E}_{2}

$$
f=y^{4}+x^{2} y \text { and } g=-f=-y^{4}-x^{2} y
$$

To be handed in until Wednesday, 15th November 2017

