Exercises Singularity Theory

- 1. (1 point) Let $U \subset \mathbb{R}^n$ be open, $0 \in U$ and $f: U \to \mathbb{R}$ smooth, and let $\psi: U \to U$ be a local diffeomorphism. Let moreover 0 be a critical point of f. Let $g: U \to \mathbb{R}$ be give as in the lectures by $g(y) := f(\psi(y))$. Show that $D^2g(0)$ und $D^2f(0)$ have equal rank and index.
- 2. (3 points)

Consider the space $\mathcal{T}(n, \mathbb{R})$ of upper triangular matrices and the space of $\operatorname{Sym}(n, \mathbb{R})$ of symmetric matrices.

- (a) Show that both are $\frac{1}{2}n(n+1)$ -dimensional real vector spaces.
- (b) Let D_0 be a fixed diagonal matrix and $\alpha : \mathcal{T}(n,\mathbb{R}) \to \operatorname{Sym}(n,\mathbb{R})$ be given as $\alpha(T) := T^{tr} \cdot D_0 \cdot T$. Show that α is a local diffeomorphism at $\operatorname{Id} \in \mathcal{T}(n,\mathbb{R})$ in the following way.
 - i. Show that α is smooth.
 - ii. Show that $D\alpha(\mathrm{Id})$ is the linear map $\mathcal{T}(n,\mathbb{R}) \to \mathrm{Sym}(n,\mathbb{R})$ defined by $T \mapsto T^{tr} \cdot D_0 + D_0 \cdot T$.
 - iii. Show that $D\alpha(\text{Id})$ is injective (Hint: use the fact that T is upper triangular) and hence also surjective.
- 3. (3 points)

Let $U := \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ und $f : U \to \mathbb{R}$ be defined by $f(x, y) := \sqrt{1 - x^2 - y^2}$.

- (a) What are the critical points of f?
- (b) Let (x_0, y_0) be any point in $U \setminus \operatorname{Crit}(f)$. Construct a local diffeomorphism near (x_0, y_0) , which transforms f into a linear function.