Exercises Singularity Theory

1. (1 point)

Show that the following smooth functions (the so-called "elementary catastrophes") have isolated critical points at 0 in \mathbb{R} resp. in \mathbb{R}^{2} and no other critical points.

$$
x^{3}, x^{4}, x^{5}, x^{6}, x^{3}+y^{3}, x^{3}-x y^{2}, x^{2} y+y^{4}
$$

2. (4 Punkte) A reminder from linear algebra:

Let V be a real vector space of dimension n and $h: V \times V \rightarrow \mathbb{R}$ a symmetric bilinear map. For a given basis $\left(v_{1}, \ldots, v_{n}\right)$ of V, the map h determines a symmetric matrix $H \in \operatorname{Sym}(n, \mathbb{R}) \subset \operatorname{Mat}(n \times n, \mathbb{R})$ by putting $H_{i j}:=h\left(v_{i}, v_{j}\right)$.
The aim of the exercise is to show that there is always a basis \underline{v}, such that the matrix H has a particular simple shape. This is sometimes called "Sylvester's law of inertia" (Sylvesterscher Trägheitssatz).
First we recall some useful notions needed for the statement and the proof.

- The radical of h is defined as $\operatorname{Rad}(h):=\{v \in V \mid h(v, w)=0 \forall w \in V\}$.
- h is called non-degenerate, if $\operatorname{Rad}(h)=\{0\}$.
- h is called positiv definite resp. negativ definite, if we have $h(v, v)>0$ resp. $h(v, v)<0$ for all $v \in V \backslash\{0\}$.

Show Sylvester's law of inertia using the following hints.
(a) (1 point) Let U be a subspace of V such that we have $V=\operatorname{Rad}(h) \oplus U$. Show that the restriction of h to U is non-degenerate.
(b) (1 point) Let h be non-degenerate and $w \in V$ such that $h(w, w) \neq 0$. Let $W:=(\mathbb{R} w)^{\perp}$ be the orthogonal complement of the space generated by w, i.e.

$$
W:=\{v \in V \mid h(v, w)=0\}
$$

Show that the restriction of h to W is non-degenerate.
(c) (2 points) Show by induction on n and using statements (a) and (b) that there is a basis $\underline{v}:=$ $\left(v_{1}, \ldots, v_{n}\right)$ of V such that the matrix H representing h with respect to \underline{v} is diagonal of the form $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}, \epsilon_{1}, \ldots, \epsilon_{l}, \nu_{1}, \ldots, \nu_{r}\right)$, and such that $\lambda_{1}=\ldots=\lambda_{k}=1, \epsilon_{1}=\ldots=\epsilon_{l}=-1$ und $\nu_{1}=\ldots=\nu_{r}=0$.
Show moreover that the numbers k, l und r are independent of the choice of the basis. They are called Sylvester's invariants (of h), in particular, the number $n-r$ is called the rank of h, r is called the corank of h and l is called the index of h.
3. (2 points) Let $g \in \mathbb{R}[x]$ be a polynomial, $p \in \mathbb{N}$ an let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y):=y^{p}-g(x)$.
(a) Show that $\operatorname{Crit}(f) \cap f^{-1}(0)=\{(x, 0) \mid g$ has multiple roots at $x\}$.
(b) Draw the set $f^{-1}(0) \subset \mathbb{R}^{2}$ in the following cases
i. $p=1,2$ und $g=x^{2}-1$,
ii. $p=2$ und $g=x^{2} \cdot\left(1-x^{2}\right)^{3}$.

To be handed in until Wednesday, 18th October 2017

