Exercises Singularity Theory

- 1. (2 points) Let $g(x, y, z) = z^p + f(x, y) \in \mathcal{R}_3$ with $f \in \mathcal{R}_2$, $p \in \mathbb{N}$. Determine a formula for the Milnor number of g in terms of the Milnor number of f.
- 2. (3 points) Let \mathcal{A} be an ideal of \mathcal{R}_n .
 - (a) Using Nakayama's Lemma, prove that $\mathcal{R}_n/\mathcal{A}$ is finite dimensional over k if and only if $\exists k \geq 1$ such that $\mathbf{m}_{\mathcal{R}_n}^k \subseteq \mathcal{A}$.
 - (b) Assume that $0 < \dim(\mathcal{R}_n/\mathcal{A}) < \infty$. Show that $\exists k, l \ge 1$ such that $\mathbf{m}_{\mathcal{R}_n}^k \subseteq \mathcal{A} \subseteq \mathbf{m}_{\mathcal{R}_n}^l$ and $\mathbf{m}_{\mathcal{R}_n}^{k-1} \not\subseteq \mathcal{A} \not\subseteq \mathbf{m}_{\mathcal{R}_n}^{l+1}$.
 - (c) Let be $l \ge 0$. Show that $\mathbf{m}_{\mathcal{R}_1}^l \subset \mathcal{R}_1$ is the unique ideal $\mathcal{A} \subset \mathcal{R}_1$ satisfying dim $(\mathcal{R}_1/\mathcal{A}) = l$.
- 3. (1+2 points)
 - (a) Show that for any $f \in \mathbf{m}_{\mathcal{R}_n}^2$ with determinacy d

$$\mu(f) \le \binom{n+d}{n} - 1$$

(b) Show that for any $f \in \mathbf{m}_{\mathcal{R}_n}^k$ and any $l \in \mathbb{N}$

$$\mu(f) \ge \binom{n+k+l-1}{k+l-1} - n\binom{n+l}{l}.$$

(Hint: Start by proving that for all l one has $J_f + \mathbf{m}_{\mathcal{R}_n}^{k+l} = \mathcal{R}_n^{\leq l} \partial_{x_1} f + \ldots + \mathcal{R}_n^{\leq l} \partial_{x_n} f + \mathbf{m}_{\mathcal{R}_n}^{k+l}$ where $\mathcal{R}^{\leq l}$ denotes the space of polynomials of degree at most l.)