Exercises Singularity Theory

1. (2 points) Let $g(x, y, z)=z^{p}+f(x, y) \in \mathcal{R}_{3}$ with $f \in \mathcal{R}_{2}, p \in \mathbb{N}$. Determine a formula for the Milnor number of g in terms of the Milnor number of f.
2. (3 points) Let \mathcal{A} be an ideal of \mathcal{R}_{n}.
(a) Using Nakayama's Lemma, prove that $\mathcal{R}_{n} / \mathcal{A}$ is finite dimensional over k if and only if $\exists k \geq 1$ such that $\mathbf{m}_{\mathcal{R}_{n}}^{k} \subseteq \mathcal{A}$.
(b) Assume that $0<\operatorname{dim}\left(\mathcal{R}_{n} / \mathcal{A}\right)<\infty$. Show that $\exists k, l \geq 1$ such that $\mathbf{m}_{\mathcal{R}_{n}}^{k} \subseteq \mathcal{A} \subseteq \mathbf{m}_{\mathcal{R}_{n}}^{l}$ and $\mathbf{m}_{\mathcal{R}_{n}}^{k-1} \nsubseteq \mathcal{A} \nsubseteq \mathbf{m}_{\mathcal{R}_{n}}^{l+1}$.
(c) Let be $l \geq 0$. Show that $\mathbf{m}_{\mathcal{R}_{1}}^{l} \subset \mathcal{R}_{1}$ is the unique ideal $\mathcal{A} \subset \mathcal{R}_{1}$ satisfying $\operatorname{dim}\left(\mathcal{R}_{1} / \mathcal{A}\right)=l$.
3. (1+2 points)
(a) Show that for any $f \in \mathbf{m}_{\mathcal{R}_{n}}^{2}$ with determinacy d

$$
\mu(f) \leq\binom{ n+d}{n}-1
$$

(b) Show that for any $f \in \mathbf{m}_{\mathcal{R}_{n}}^{k}$ and any $l \in \mathbb{N}$

$$
\mu(f) \geq\binom{ n+k+l-1}{k+l-1}-n\binom{n+l}{l}
$$

(Hint: Start by proving that for all l one has $J_{f}+\mathbf{m}_{\mathcal{R}_{n}}^{k+l}=\mathcal{R}_{n}^{\leq l} \partial_{x_{1}} f+\ldots+\mathcal{R}_{n}^{\leq l} \partial_{x_{n}} f+\mathbf{m}_{\mathcal{R}_{n}}^{k+l}$ where $\mathcal{R}^{\leq l}$ denotes the space of polynomials of degree at most l.)

