Exercises Singularity Theory

- 1. (3 points) Show that $x^p + y^p$ and $x^p + y^p + x^2y^2$ $(p \ge 5)$ are not right equivalent in \mathcal{R}_2 .
- 2. (2 points) Let $f = x^3 + y^3 + z^3 + 3 \cdot c \cdot xyz \in \mathcal{R}_3, c \in \mathbb{R}, c \neq 0, -1.$
 - (a) Compute the Milnor number and determinacy of f.
 - (b) Explain why c = -1 is special.
- 3. (4 points) Let $f = x^n$ and $F(x,t) := f_t(x) := x^n + tx^{n+1}$.
 - (a) Determine a smooth function $H(t,x) : I \times (-\epsilon, \epsilon) \to \mathbb{R}$ (where $I \subset \mathbb{R}$ is an intervall containing 0), such that $h_t(x) := H(-,t)$ for all $t \in (-\epsilon, \epsilon)$ is a coordinate change (i.e., a local diffeomorphism at $0 \in \mathbb{R}$), and such that we have $f \circ h_t = f_t$.
 - (b) Find a smooth function $\xi(x, t)$ which satisfies the following equation

$$\xi(x,t) \cdot \partial_x F(X,t) + \partial_t F_t(x,t) = 0$$

(c) Write down explicitly the following differential equation.

$$\partial_t H(x,t) = \xi(H(X,t),t)$$

(d) Show that a solution H(x,t) of the equation $\partial_t H(x,t) = \xi(H(X,t),t)$ satisfies the identity

$$\frac{dF(H(x,t),t)}{dt} = 0.$$

4. (3 points) Let $f = x^3 + xy^p \in \mathcal{R}_2$, p > 2. Find the smallest integer k such that $\mathbf{m}^k \subset \mathbf{m}J_f$.

(Remark: This calculation is the main step towards establishing the precise value of the determinacy of f. Namely, one has the following theorem: If f is a germ and k is the smallest integer such that $\mathbf{m}^k \subset \mathbf{m}J_f$ then the determinacy of f is either k or k-1.)