Exercises Singularity Theory

1. (3 points) Let k be a field, and consider a commutative k-algebra R together with a (descending) filtration $R = I_0 \supset I_1 \supset I_3 \supset \ldots$ by ideals (also written as $(I_{\bullet}) \subset R$, or $(I_{\bullet}R)$ where the symbol \bullet stands for any index $k \in \mathbb{N}$). Let J be an ideal such that the quotient R/J is a finite-dimensional k-vector space. Prove that

$$\dim_k(R/J) = \sum_{i \ge 0} \dim_k \left(\frac{I_i + J}{I_{i+1} + J} \right).$$

Hints:

(a) Show that for all i, there is an isomorphism of R-modules

$$\frac{I_i}{I_i \cap J} \cong \frac{I_i + J}{J}$$

- (b) Show that by considering the quotient map $R \twoheadrightarrow R/J$, the filtration I_{\bullet} induces a filtration $(\widetilde{I}_{\bullet}R/J)$ on R/J by k-sub-vector spaces.
- (c) Show that for finite-dimensional k-vector space V and any filtration $F_{\bullet}V$ by sub-vector spaces, we have $\dim_k(V) = \dim_k \operatorname{gr}_{\bullet}^F V$, where

$$\operatorname{gr}_{i}^{F}V := F_{i}V/F_{i+1}V$$
 and $\operatorname{gr}_{\bullet}^{F}V = \bigoplus_{i\geq 0}\operatorname{gr}_{i}^{F}V.$

- 2. (3 points) Do the following germs have isolated singularities ? If yes, determine their Milnor number and the smallest number k such that f is k-determined (i.e., their determinacy).
 - (a) $f = x^4 + y^3 \in \mathcal{R}_2$
 - (b) $f = x^3 + y^5 + x \in \mathcal{R}_2.$
 - (c) $f = x^2 y^2 \in \mathcal{R}_3$
- 3. (3 points) Compute the Milnor number of the following germs.
 - (a) $f = x^3 + xy^p \in \mathcal{R}_2, p > 2,$
 - (b) $f = x^p + y^p + x^2 y^2 \in \mathcal{R}_2, p > 3,$
 - (c) $f = x^2 + y^2 + 2xy \in \mathcal{R}_2$.