Exercises Singularity Theory

1. (3 points) Recall that a (commutative) ring R (with a unit element 1) is called a local ring iff it has exactly one maximal ideal $\mathbf{m} \subset R$.
(a) Show that if (R, \mathbf{m}) is local, then for any $x \in \mathbf{m}$, the element $1+x$ is a unit in R.
(b) Let R be a local ring and $I \subset R$ any ideal. Show that the factor ring R / I is also local.
(c) Let $\mathbb{R}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be the local ring of formal power series over \mathbb{R}. Give an explicit expression for the inverse of $1+x$ for $x \in \mathbf{m}$.
(d) Show that the polynomial ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is not local.
(e) For any local ring, define $k:=R / \mathbf{m}$. Then k is a field, called the residue class field of (R, \mathbf{m}). Show that the residue class field of \mathcal{E} is isomorphic to \mathbb{R}.
(f) Let (R, \mathbf{m}) be local and define by

$$
H_{R}(d):=\operatorname{dim}_{k}\left(\mathbf{m}^{d} / \mathbf{m}^{d+1}\right)
$$

the Hilbert function of the local ring R. Calculate the Hilbert function for the following local rings
i. $R=\mathcal{E}_{n}, R=\mathbb{R}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$,
ii. $R=\mathbb{R}[[x, y]] /(x y)$,
iii. $R=\mathbb{R}[[x, y]] /\left(x^{2}-y^{3}\right)$.
2. (3 Punkte)
(a) Show that the formal power series ring $\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]:=\left\{\sum_{\underline{\nu} \in \mathbb{N}^{n}} a_{\underline{\nu}} \cdot x \underline{\underline{\nu}} \mid a_{\underline{\nu}} \in \mathbb{R}\right\}$ is a K-algebra (using the operations + and \cdot indicated in the lecture). Show moreover that $\mathbf{m}:=\left\{\sum_{\underline{\nu} \in \mathbb{N}^{n}} a_{\underline{\nu}} \cdot x \underline{\underline{\nu}} \mid a_{\underline{\nu}} \in \mathbb{R}, a_{\underline{0}}=0\right\}$ is a maximales ideal in $\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ ist.
(b) Show that the Taylor development map $T: \mathcal{R}_{n} \rightarrow \mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ satisfies $T([f] \cdot[g])=$ $T([f]) \cdot T([g])$. Show in particular (and use it) the "generalized Leibniz rule"

$$
D^{\underline{\nu}}(f \cdot g)=\sum_{\underline{\kappa}+\underline{\lambda}=\underline{\nu}}\binom{\underline{\nu}}{\underline{\kappa}} D^{\underline{\kappa}} f \cdot D^{\underline{\lambda}} g
$$

Hint: Use induction over $|\underline{\nu}|$.
3. (2 points) Consider the local ring $\left(\mathcal{E}_{n}, \mathbf{m}\right)$ and let $\Psi:=\left(\Psi_{1}, \ldots, \Psi_{n}\right) \in \mathbf{m}^{\oplus n} \subset\left(\mathcal{E}_{n}\right)^{n}=\mathcal{E}_{n, n}$ (caution: $\mathbf{m}^{\oplus n}$ denotes the direct sum $\mathbf{m} \oplus \ldots \oplus \mathbf{m}$, do not confuse this with the n-th power \mathbf{m}^{n} of \mathbf{m}).
(a) Show that the substitution map (also called pull-back or inverse image)

$$
\begin{aligned}
\Psi^{*}: R & \longrightarrow \\
f & \longmapsto f \circ \Psi
\end{aligned}
$$

is an algebra homomorphism preserving the identity. Show further that $\Psi^{*}\left(\mathbf{m}^{k}\right) \subset \mathbf{m}^{k}$.
(b) Deduce from (a) that Ψ induces linear maps

$$
\left(\Psi^{*}\right)_{k}: \mathbf{m}^{k} / \mathbf{m}^{k+1} \longrightarrow \mathbf{m}^{k} / \mathbf{m}^{k+1}
$$

Show that Ψ is an automorphism iff $\left(\Psi^{*}\right)_{1}$ is invertible.
To be handed in until Thursday, 14th May 2020, (by email to valeria.bertini@mathematik. tu-chemnitz.de)

