Sheet 2 17.04.2020

Exercises Singularity Theory

- 1. (1 point) Let $U \subset \mathbb{R}^n$ be open, $0 \in U$ and $f: U \to \mathbb{R}$ smooth, and let $\psi: U \to U$ be a local diffeomorphism. Let moreover 0 be a critical point of f. Let $g: U \to \mathbb{R}$ be give as in the lectures by $g(y) := f(\psi(y))$. Show that $D^2g(0)$ und $D^2f(0)$ have equal rank and index.
- 2. (1+2 points) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = x^2 y^2 xy^2 + x^2y$.
 - (a) What are the rank and the index of f (i.e., the rank and the index of $D^2 f(0)$)?
 - (b) Show that there is a local diffeomorphism ϕ at 0 in \mathbb{R}^2 which transforms f into the function $g: \mathbb{R}^2 \to \mathbb{R}^2, g(x, y) = x^2 y^2$.
- 3. (3 points)

Let $U := \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ und $f : U \to \mathbb{R}$ be defined by $f(x, y) := \sqrt{1 - x^2 - y^2}$.

- (a) What are the critical points of f?
- (b) Let (x_0, y_0) be any point in $U \setminus \operatorname{Crit}(f)$. Construct a local diffeomorphism near (x_0, y_0) , which transforms f into a linear function.