Hausaufgaben zur Linearen Algebra

1. (3 points) Let M be an arbitrary set and denote by $\mathcal{P}(M)$ the set of all subsets of M. Recall the definition of the symmetric difference: for subsets $A, B \subset M$, let

$$A \Delta B := (A \cup B) \setminus (A \cap B).$$

Show that the pair $(\mathcal{P}(M), \Delta)$ is an abelian group.

- 2. (6 Punkte) Beweisen Sie mit Hilfe des Prinzips des vollständigen Induktion, dass die folgenden Aussagen für alle $n \in \mathbb{N}$ und alle $x, y \in \mathbb{R}$ gelten.
 - (a) $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$,
 - (b) $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$,
 - (c) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 3. (6 Punkte) In der Vorlesung wurde für eine Menge M die Gruppe der Permutationen $(S(M), \circ)$ eingeführt. Wir definieren $S_n := S(\{1, \ldots, n\})$ und nennen (S_n, \circ) die symmetrische Gruppe (der Menge $\{1, \ldots, n\}$).
 - (a) Bestimmen Sie alle Elemente der symmtrischen Gruppen S_1 , S_2 und S_3 .
 - (b) Für eine Gruppe (G,*) mit neutralem Element e und für ein Element $g \in G$ heisst

$$o(g) := \min(k \in \mathbb{N} \mid \underbrace{g * \dots * g}_{k-\text{mal}} = e)$$

die Ordnung von g (insbesondere ist also o(e) = 1). Bestimmen Sie die Ordnungen der Gruppenelemente von S_1 , S_2 und S_3 .

4. (5 Punkte) Wir definieren die Teilmenge $\mathbb{Q}[\sqrt{2}]$ von \mathbb{R} als

$$\mathbb{Q}[\sqrt{2}] := \left\{ a + b \cdot \sqrt{2} \, | \, a, b \in \mathbb{Q} \right\}.$$

Zeigen Sie, dass $(\mathbb{Q}[\sqrt{2}]\setminus\{0\},\cdot)$ eine abelsche Gruppe ist.

Alle Informationen zur Vorlesung (Termine, Übungsblätter, etc.) sind unter

https://www.tu-chemnitz.de/mathematik/algebra/LinAlg1-WS1617/linalg1.php

zu finden.