Exercises to "Introduction to \mathcal{D} -modules"

- 1. Let $f : \mathbb{A}^n \to \mathbb{A}^1_t$ be a polynomial and denote by $i_f : \mathbb{A}^n \hookrightarrow \mathbb{A}^1_t \times \mathbb{A}^n$ its graph embedding.
 - (a) Verify (using the definition of the direct image discussed before) the two expressions given in the lecture for the graph embedding module $i_{f,+}\mathcal{O}_{\mathbb{A}^n}$.
 - (b) Check (along the lines given in the lecture, i.e, by decomposing $f = p \circ i_f$) that the direct image complex $f_+ \mathcal{O}_{\mathbb{A}^n} \in D^b(\mathcal{D}_{\mathbb{A}^1})$ is represented by

$$(f_*\Omega^{\bullet+n}_{\mathbb{A}^n}[\partial_t], d-(df\wedge -\otimes \partial_t)).$$

2. Let $M \in Mod(\mathcal{D}_{\mathbb{A}^1_t})$. Check that the Fourier transform \widehat{M} of M (i.e. the C-vector space M together with the action of $\tau \cdot := -\partial_t \cdot$ and $\partial_\tau \cdot := t \cdot$) can be defined by

$$\widehat{M} := H^0 q_+ \left(p^+ M \otimes_{\mathcal{O}_{\mathbb{A}^1_t \times \mathbb{A}^1_\tau}} \mathcal{E}^{t \cdot \tau} \right),$$

where $p: \mathbb{A}^1_{\tau} \times \mathbb{A}^1_t \twoheadrightarrow \mathbb{A}^1_t$, where $q: \mathbb{A}^1_{\tau} \times \mathbb{A}^1_t \twoheadrightarrow \mathbb{A}^1_{\tau}$ and where $\mathcal{E}^{t \cdot \tau}$ is the free rank 1 $\mathcal{O}_{\mathbb{A}^1_t \times \mathbb{A}^1_{\tau}}$ -module with connection $\nabla := d + d(t \cdot \tau)$. Check also that $H^i q_+ \left(p^+ M \otimes_{\mathcal{O}_{\mathbb{A}^1_t \times \mathbb{A}^1_{\tau}}} \mathcal{E}^{t \cdot \tau} \right) = 0$ for $i \neq 0$.

- 3. Show that for $\mathcal{M} \in \operatorname{Mod}_c(\mathcal{D}_X)$, the characteristic variety char (\mathcal{M}) does not depend on the choice of a good filtration $F_{\bullet}\mathcal{M}$. Hints:
 - (a) First show that if we have two filtration $F_{\bullet}\mathcal{M}, G_{\bullet}\mathcal{M}$ such that F_{\bullet} is good, then there is some $a \in \mathbb{N}$ such that $F_i\mathcal{M} \subset G_{i+a}\mathcal{M}$ for all $i \in \mathbb{Z}$.
 - (b) Conclude that any two good filtrations $F_{\bullet}\mathcal{M}, G_{\bullet}\mathcal{M}$ are contained in each other in the sense that there is some $i_0 \in \mathbb{N}$ such that $G_{i-i_0}\mathcal{M} \subset F_i\mathcal{M} \subset G_{i+i_0}\mathcal{M}$ for all $i \in \mathbb{Z}$.
 - (c) Now deduce the independence of the characteristic variety from the choice of a good filtration.
- 4. (a) Let $i: X \hookrightarrow Y$ be a smooth algebraic subvariety (of a smooth algebraic variety Y). Show that we have $\operatorname{char}(i_+\mathcal{O}_X) = T_X^*Y$, where

$$T_X^*Y := \{ (\xi, x) \in T^*Y \, | \, \xi(v) = 0 \ \forall v \in T_xX \}$$

is the *conormal bundle* of Y in X.

(b) Show that $T_X^*Y \subset T^*X$ is a lagrangian submanifold, thus proving that $i_+\mathcal{O}_X$ is holonomic.

Lecture notes, exercise etc. to be found at