Exercises to "Introduction to \mathcal{D}-modules"

1. Show that if $j: U \hookrightarrow X$ is an open embedding of smooth algebraic varieties then:
(a) For any $M \in \operatorname{Mod}\left(\mathcal{D}_{X}\right)$, we have

$$
j^{+} M=j^{*} M=j^{-1} M \in \operatorname{Mod}\left(\mathcal{D}_{U}\right)
$$

(b) For any $N \in \operatorname{Mod}\left(\mathcal{D}_{U}\right)$, we have

$$
j_{+} N=R j_{*} N \in D^{b}\left(\mathcal{D}_{X}\right)
$$

2. Let $i: X \hookrightarrow Y$ be a closed embedding, given in local coordinates by $\left(x_{1}, \ldots, x_{r}\right) \hookrightarrow\left(x_{1}, \ldots, x_{r}, 0, \ldots, 0\right)=$: $\left(y_{1}, \ldots, y_{n}\right)$. Use the computation of the transfer module $\mathcal{D}_{Y \leftarrow X}$ from the last sheet to check that for $M \in \operatorname{Mod}\left(\mathcal{D}_{X}\right)$, we have $i_{+} M \cong\left(i_{*} M\right)\left[\partial_{y_{r+1}}, \ldots, \partial_{y_{n}}\right]$ as \mathbb{C}-vector spaces. Make the left action of \mathcal{D}_{Y} on $i_{+} M$ explicit.
3. Consider the Spencer complex

$$
\mathrm{Sp}^{\bullet}\left(\mathcal{D}_{X}\right)=\left(\ldots \rightarrow \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \bigwedge^{k} \Theta_{X} \rightarrow \ldots\right)
$$

resp. the de Rham complex

$$
\mathrm{DR}^{\bullet}\left(\mathcal{D}_{X}\right)=\left(\ldots \rightarrow \Omega_{X}^{k} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X} X \rightarrow \ldots\right)
$$

of \mathcal{D}_{X}. Show that the contraction

$$
\begin{aligned}
\omega_{X} \otimes_{\mathcal{O}_{X}}\left(\mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \Lambda^{k} \Theta_{X}\right) & \longrightarrow \Omega_{X}^{n-k} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X} \\
\omega \otimes 1 \otimes \theta & \longmapsto(-1)^{(n-k) \frac{n-k-1}{2}} \omega(\theta \wedge-) \otimes 1
\end{aligned}
$$

is an isomorphism of right \mathcal{D}_{X}-modules (make the right structure on both sides explicit) and induces an isomorphism of complexes $\left[\mathrm{Sp}^{\bullet}\left(\mathcal{D}_{X}\right)\right]^{r} \cong \mathrm{DR}^{\bullet}\left(\mathcal{D}_{X}\right)$, where $\left[\mathrm{Sp}^{\bullet}\left(\mathcal{D}_{X}\right)\right]^{r}$ denotes the complex of right $\mathcal{D}_{X^{-}}$ modules associated to the Spencer complex of \mathcal{D}_{X} (which is a complex of left \mathcal{D}_{X}-modules).
4. Let $X=Y \times Z \rightarrow Y$ be a projection. Show that the relative de Rham complex $\mathrm{DR}_{X / Y}^{\bullet}\left(\mathcal{D}_{X}\right)$ of \mathcal{D}_{X} is a resolution by free right \mathcal{D}-modules of the transfer module $\mathcal{D}_{Y \leftarrow X}$. Deduce that for any left \mathcal{D}_{X}-module M, we have

$$
\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_{X}}^{\mathbb{L}} M \cong \mathrm{DR}_{X / Y}^{\bullet}(M)
$$

as left $f^{-1} \mathcal{D}_{Y}$-modules.

Lecture notes, exercise etc. to be found at

