Exercises to "Introduction to \mathcal{D}-modules"

1. Let $X=\mathbb{A}^{r}$ and $Y=\mathbb{A}^{n}$ with $n \geq r$. Let

$$
\begin{aligned}
i: X & \hookrightarrow Y \\
\left(x_{1}, \ldots, x_{r}\right) & \longmapsto\left(x_{1}, \ldots, x_{r}, 0, \ldots, 0\right)=:\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

be an embedding.
(a) Check that we have an isomorphism of $\left(\mathcal{D}_{X}, i^{-1} \mathcal{D}_{Y}\right)$-bimodules

$$
\mathcal{D}_{X \rightarrow Y} \cong \mathcal{D}_{X}\left[\partial_{y_{r+1}}, \ldots, \partial_{y_{n}}\right] \cong \frac{i^{-1} \mathcal{D}_{Y}}{\left(y_{r+1}, \ldots, y_{n}\right) i^{-1} \mathcal{D}_{Y}}
$$

and make the bimodule structure on the right hand sides explicit.
(b) Similarly, check that

$$
\mathcal{D}_{Y \leftarrow X} \cong \mathbb{C}\left[\partial_{y_{r+1}}, \ldots, \partial_{y_{n}}\right] \otimes_{\mathbb{C}} \mathcal{D}_{X} \cong \frac{i^{-1} \mathcal{D}_{Y}}{i^{-1} \mathcal{D}_{Y}\left(y_{r+1}, \ldots, y_{n}\right)}
$$

taking into account the $\left(i^{-1} \mathcal{D}_{Y}, \mathcal{D}_{X}\right)$-bimodule structure.
2. Consider now a projection from $X=\mathbb{A}^{n}$ to $Y=\mathbb{A}^{r}$ with $n \geq r$, that is:

$$
\begin{aligned}
f: X & \rightarrow Y \\
\left(x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{n}\right) & \longmapsto\left(x_{1}, \ldots, x_{r}\right)=:\left(y_{1}, \ldots, y_{r}\right)
\end{aligned}
$$

(a) Show again the that we have an isomorphism of $\left(\mathcal{D}_{X}, f^{-1} \mathcal{D}_{Y}\right)$-bimodules

$$
\mathcal{D}_{X \rightarrow Y} \cong \mathcal{O}_{X}\left[\partial_{y_{1}}, \ldots, \partial_{y_{r}}\right] \cong \frac{\mathcal{D}_{X}}{\mathcal{D}_{X}\left(\partial_{x_{r+1}}, \ldots, \partial_{x_{n}}\right)}
$$

(b) Prove that

$$
\mathcal{D}_{Y \leftarrow X} \cong \mathbb{C}\left[\partial_{y_{1}}, \ldots, \partial_{y_{r}}\right] \otimes \mathcal{O}_{X} \cong \frac{\mathcal{D}_{X}}{\left(\partial_{x_{r+1}}, \ldots, \partial_{x_{n}}\right) \mathcal{D}_{X}}
$$

with its $\left(f^{-1} \mathcal{D}_{Y}, \mathcal{D}_{X}\right)$-bimodule structure.
3. Let \mathcal{M} be a left \mathcal{D}_{X}-module and $f: X \rightarrow Y$ be a morphism. Show that there is an isomorphism

$$
\left(\omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{M}\right) \otimes_{\mathcal{D}_{X}} \mathcal{D}_{X \rightarrow Y} \cong\left(\omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X \rightarrow Y}\right) \otimes_{\mathcal{D}_{X}} \mathcal{M}
$$

of right $f^{-1} \mathcal{D}_{Y}$-modules (make the right $f^{-1} \mathcal{D}_{Y}$-module structure explicit on both sides) given by

$$
(\omega \otimes m) \otimes P \longmapsto(\omega \otimes P) \otimes m
$$

4. (a) Show that an affine variety is \mathcal{D}-affine.
(b) Show that for a \mathcal{D}-affine variety X, the functor

$$
\Gamma(X,-): \operatorname{Mod}_{q . c .}\left(\mathcal{D}_{X}\right) \longrightarrow \operatorname{Mod}\left(\Gamma\left(X, \mathcal{D}_{X}\right)\right)
$$

of global sections yields an equivalence between the category of sheaves of \mathcal{O}_{X}-quasi-coherent $\mathcal{D}_{X^{-}}$ modules and the category of modules over the ring $\Gamma\left(X, \mathcal{D}_{X}\right)$.
5. Let us temporarily define an increasing filtration on a left \mathcal{D}_{X}-module \mathcal{M} to be a sequence $F_{k} \mathcal{M}$ with $F_{k} \mathcal{M} \subset F_{k+1} \mathcal{M}$ and such that $\cup_{k \in \mathbb{Z}} F_{k} \mathcal{M}=\mathcal{M}$, such that $F_{k} \mathcal{M}=0$ for $k \ll 0$ and such that

$$
F_{k} \mathcal{D}_{X} \cdot F_{k} \mathcal{M} \subset F_{k+l} \mathcal{M}
$$

and with a similar condition for right modules.
Now for a morphism $f: X \rightarrow Y$, put

$$
F_{k} \mathcal{D}_{X \rightarrow Y}:=\mathcal{O}_{X} \otimes_{f^{-1} \mathcal{O}_{Y}} f^{-1} F_{k} \mathcal{D}_{X}
$$

then show that this defines a filtration of $\mathcal{D}_{X \rightarrow Y}$ as a left \mathcal{D}_{X} and as a right $f^{-1} \mathcal{D}_{Y}$-module and that

$$
g r^{F} \mathcal{D}_{X \rightarrow Y}=\mathcal{O}_{X} \otimes_{f-1} \mathcal{O}_{Y} f^{-1} g r^{F} \mathcal{D}_{Y}
$$

6. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be morphisms (between smooth algebraic varieties, as always).
(a) Construct a canonical isomorphism

$$
\mathcal{D}_{X \rightarrow Y} \otimes_{f^{-1} \mathcal{D}_{Y}} f^{-1} \mathcal{D}_{Y \rightarrow Z} \cong \mathcal{D}_{X \rightarrow Z}
$$

as right $(g \circ f)^{-1} \mathcal{D}_{Z}$-modules.
(b) Show that this isomorphism is also left \mathcal{D}_{X}-linear (use the chain rule).
(c) Endow the transfer modules with filtrations as in the last exercise, then show that the isomorphism just constructed is filtered.

Lecture notes, exercise etc. to be found at

