Exercises to "Introduction to \mathcal{D}-modules"

1. Consider the filtration $F_{k} \mathcal{D}_{X}$ defined locally by

$$
F_{k} \mathcal{D}_{X}(U)=\sum_{|\underline{\alpha}| \leq k} \mathcal{O}_{X}(U) \partial_{\underline{\underline{\alpha}}}^{\alpha}
$$

for an affine open set $U \subset X$ with local coordinate system x_{1}, \ldots, x_{n}. Show
(a) $F_{k} \mathcal{D}_{X} \subset F_{k+1} \mathcal{D}_{X}$,
(b) $\mathcal{D}_{X}=\bigcup_{k \in \mathbb{N}} F_{k} \mathcal{D}_{X}$,
(c) each $F_{k} \mathcal{D}_{X}$ is \mathcal{O}_{X}-locally free,
(d) $F_{0} \mathcal{D}_{X}=\mathcal{O}_{X}$,
(e) $F_{k} \mathcal{D}_{X} \cdot F_{l} \mathcal{D}_{X}=F_{k+l} \mathcal{D}_{X}$,
(f) for all local sections $P \in F_{k} \mathcal{D}_{X}, Q \in F_{l} \mathcal{D}_{X}$ we have $[P, Q] \in F_{k+l-1} \mathcal{D}_{X}$,
(g) we have the charactarization

$$
F_{k} \mathcal{D}_{X}=\left\{P \in \mathcal{E} n d_{\mathbb{C}}\left(\mathcal{O}_{X}\right) \mid \forall f \in \mathcal{O}_{X}:[P, f] \in F_{k-1} \mathcal{D}_{X}\right\}
$$

Deduce that (b) $+(\mathrm{g})$ gives an alternative definition of \mathcal{D}_{X} which makes sense for singular varieties X (Grothendieck's definition).
2. Show that $\operatorname{Gr}_{\bullet}^{F} \mathcal{D}_{X}$ is a commutative sheaf of rings (graded by degree of symbols of operators). Show that it is a (sheaf of) \mathcal{O}_{X}-algebra(s) that can be identified with $\pi_{*} \mathcal{O}_{T^{*} X}$, where $\pi: T^{*} X \rightarrow X$ is the cotangent bundle of X.
3. Let \mathcal{M} be an \mathcal{O}_{X}-module. Show that a left \mathcal{D}_{X}-module structure on \mathcal{M} is uniquely determined by a morphism $\nabla: \Theta_{X} \rightarrow \mathcal{E n d}_{\mathbb{C}}(\mathcal{M})$ satisfying
(a) $\nabla_{f \vartheta}(s)=f \nabla_{\vartheta}(s)$,
(b) $\nabla_{\vartheta}(f s)=f \nabla_{\vartheta}(s)+\vartheta(f) \nabla_{\vartheta}(s)$,
(c) $\nabla_{[\vartheta, \rho]}(s)=\left[\nabla_{\vartheta}, \nabla_{\rho}\right](s)$
for all local sections $f \in \mathcal{O}_{X}, \vartheta, \rho \in \Theta_{X}, s \in \mathcal{M}$. Show also that this is equivalent to having a morphism

$$
\nabla: \mathcal{M} \longrightarrow \Omega_{X}^{1} \otimes_{\mathcal{O}_{X}} \mathcal{M}
$$

which is \mathbb{C}-linear, such that $\nabla(f s)=f \nabla s+d f \otimes s$ and such that $\nabla^{(2)} \circ \nabla=0$, where $\nabla^{(2)}: \Omega_{X}^{1} \otimes \mathcal{M} \rightarrow \Omega_{X}^{2} \otimes \mathcal{M}$ denotes the extension sending $\alpha \otimes s$ to $d \alpha \otimes s-\alpha \wedge \nabla s$.
Similarly, show that a right \mathcal{D}_{X}-module structure on \mathcal{M} is uniquely determined by a morphism $\nabla^{\prime}: \Theta_{X} \rightarrow$ $\mathcal{E} d_{\mathbb{C}}(\mathcal{M})$ satisfying
(a) $\nabla_{f \vartheta}^{\prime}(s)=\nabla_{\vartheta}^{\prime}(f s)$,
(b) $\nabla_{\vartheta}^{\prime}(f s)=f \nabla_{\vartheta}^{\prime}(s)+\vartheta(f) \nabla_{\vartheta}^{\prime}(s)$,
(c) $\nabla_{[\vartheta, \rho]}^{\prime}(s)=\left[\nabla_{\vartheta}^{\prime}, \nabla_{\rho}^{\prime}\right](s)$.
4. Show that the map

$$
\Theta_{X} \times \Omega_{X}^{n} \longrightarrow \Omega_{X}
$$

sending (ϑ, ω) to $-\operatorname{Lie}_{\vartheta}(\omega)$ puts a uniquely determined right \mathcal{D}_{X}-module structure on the canonical sheaf $\omega_{X}:=\Omega_{X}^{n}$.
5. Let \mathcal{M}, \mathcal{N} be left \mathcal{D}_{X}-modules and let $\mathcal{M}^{\prime}, \mathcal{N}^{\prime}$ be right \mathcal{D}_{X}-modules. Verify that
(a) $\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{N}$,
(b) $\mathcal{H o m}_{\mathcal{O}_{X}}(\mathcal{M}, \mathcal{N})$,
(c) $\mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{M}^{\prime}, \mathcal{N}^{\prime}\right)$,
are left \mathcal{D}_{X}-modules and that
(a) $\mathcal{M}^{\prime} \otimes_{\mathcal{O}_{X}} \mathcal{N}$,
(b) $\mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{M}, \mathcal{N}^{\prime}\right)$,
are right \mathcal{D}_{X}-modules, where in all cases we endow tensor products resp. homorphism sheaves with the action by Θ_{X} given in the lecture.
6. Check that putting

$$
\mathcal{M}^{\prime}:=\omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{M}
$$

for a left \mathcal{D}_{X}-module \mathcal{M} and putting

$$
\mathcal{N}:=\mathcal{H}^{2} m_{\mathcal{O}_{X}}\left(\omega_{X}, \mathcal{N}^{\prime}\right)
$$

for a right \mathcal{D}_{X}-module \mathcal{N}^{\prime} gives an equivalence between the categories of left and right \mathcal{D}_{X}-modules.

Lecture notes, exercise etc. to be found at

