Exercises to "Introduction to \mathcal{D} -modules"

1. Consider the filtration $F_k \mathcal{D}_X$ defined locally by

$$F_k \mathcal{D}_X(U) = \sum_{|\underline{\alpha}| \le k} \mathcal{O}_X(U) \partial_{\underline{x}}^{\underline{\alpha}}$$

for an affine open set $U \subset X$ with local coordinate system x_1, \ldots, x_n . Show

- (a) $F_k \mathcal{D}_X \subset F_{k+1} \mathcal{D}_X$,
- (b) $\mathcal{D}_X = \bigcup_{k \in \mathbb{N}} F_k \mathcal{D}_X$,
- (c) each $F_k \mathcal{D}_X$ is \mathcal{O}_X -locally free,
- (d) $F_0 \mathcal{D}_X = \mathcal{O}_X$,
- (e) $F_k \mathcal{D}_X \cdot F_l \mathcal{D}_X = F_{k+l} \mathcal{D}_X$,
- (f) for all local sections $P \in F_k \mathcal{D}_X$, $Q \in F_l \mathcal{D}_X$ we have $[P, Q] \in F_{k+l-1} \mathcal{D}_X$,
- (g) we have the charactarization

$$F_k \mathcal{D}_X = \{ P \in \mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X) \, | \, \forall f \in \mathcal{O}_X : [P, f] \in F_{k-1} \mathcal{D}_X \}$$

Deduce that (b)+(g) gives an alternative definition of \mathcal{D}_X which makes sense for singular varieties X (Grothendieck's definition).

- 2. Show that $\operatorname{Gr}_{\bullet}^{F} \mathcal{D}_{X}$ is a commutative sheaf of rings (graded by degree of symbols of operators). Show that it is a (sheaf of) \mathcal{O}_{X} -algebra(s) that can be identified with $\pi_{*}\mathcal{O}_{T^{*}X}$, where $\pi: T^{*}X \to X$ is the cotangent bundle of X.
- 3. Let \mathcal{M} be an \mathcal{O}_X -module. Show that a left \mathcal{D}_X -module structure on \mathcal{M} is uniquely determined by a morphism $\nabla : \Theta_X \to \mathcal{E}nd_{\mathbb{C}}(\mathcal{M})$ satisfying

(a)
$$\nabla_{f\vartheta}(s) = f\nabla_{\vartheta}(s),$$

(b) $\nabla_{\vartheta}(fs) = f\nabla_{\vartheta}(s) + \vartheta(f)\nabla_{\vartheta}(s),$
(c) $\nabla_{[\vartheta,\rho]}(s) = [\nabla_{\vartheta}, \nabla_{\rho}](s)$

for all local sections $f \in \mathcal{O}_X, \vartheta, \rho \in \Theta_X, s \in \mathcal{M}$. Show also that this is equivalent to having a morphism

$$\nabla: \mathcal{M} \longrightarrow \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{M}$$

which is C-linear, such that $\nabla(fs) = f \nabla s + df \otimes s$ and such that $\nabla^{(2)} \circ \nabla = 0$, where $\nabla^{(2)} : \Omega^1_X \otimes \mathcal{M} \to \Omega^2_X \otimes \mathcal{M}$ denotes the extension sending $\alpha \otimes s$ to $d\alpha \otimes s - \alpha \wedge \nabla s$.

Similarly, show that a right \mathcal{D}_X -module structure on \mathcal{M} is uniquely determined by a morphism $\nabla' : \Theta_X \to \mathcal{E}nd_{\mathbb{C}}(\mathcal{M})$ satisfying

- $$\begin{split} &(\mathrm{a}) \ \nabla'_{f\vartheta}(s) = \nabla'_{\vartheta}(fs), \\ &(\mathrm{b}) \ \nabla'_{\vartheta}(fs) = f \nabla'_{\vartheta}(s) + \vartheta(f) \nabla'_{\vartheta}(s), \\ &(\mathrm{c}) \ \nabla'_{[\vartheta,\rho]}(s) = [\nabla'_{\vartheta}, \nabla'_{\rho}](s). \end{split}$$
- 4. Show that the map

$$\Theta_X \times \Omega^n_X \longrightarrow \Omega_X$$

sending (ϑ, ω) to $-\text{Lie}_{\vartheta}(\omega)$ puts a uniquely determined right \mathcal{D}_X -module structure on the canonical sheaf $\omega_X := \Omega_X^n$.

5. Let \mathcal{M}, \mathcal{N} be left \mathcal{D}_X -modules and let $\mathcal{M}', \mathcal{N}'$ be right \mathcal{D}_X -modules. Verify that

- (a) $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{N}$,
- (b) $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M},\mathcal{N}),$
- (c) $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}', \mathcal{N}'),$

are left \mathcal{D}_X -modules and that

- (a) $\mathcal{M}' \otimes_{\mathcal{O}_X} \mathcal{N}$,
- (b) $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}, \mathcal{N}'),$

are right \mathcal{D}_X -modules, where in all cases we endow tensor products resp. homorphism sheaves with the action by Θ_X given in the lecture.

6. Check that putting

$$\mathcal{M}' := \omega_X \otimes_{\mathcal{O}_X} \mathcal{M}$$

for a left \mathcal{D}_X -module \mathcal{M} and putting

$$\mathcal{N} := \mathcal{H}\!om_{\mathcal{O}_X}(\omega_X, \mathcal{N}')$$

for a right \mathcal{D}_X -module \mathcal{N}' gives an equivalence between the categories of left and right \mathcal{D}_X -modules.