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Abstract

Frenkel and Gross constructed a family of connections on P1\{0, ∞}, for almost simple groups Ǧ
and their representations. In this article, we calculate the irregular Hodge numbers of these Frenkel–
Gross connections, and, as an application, we prove a conjecture of Katzarkov–Kontsevich–Pantev for
mirror Landau-Ginzburg models of minuscule homogeneous spaces.
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1 Introduction
The study of irregular singularities of systems of linear differential equations has gained increasing
importance across various mathematical fields, such as Hodge theory or arithmetics. Since the differential
equations underlying variations of Hodge structures (VHS) can only have regular singularities, we need a
broader framework to discuss the Hodge theoretic properties of irregular connections.

A famous example is the Bessel differential equation (t∂t)n+1 − t. The associated connection, called
the Bessel connection (or Kloosterman connection), is the connection

∇ = d +


0 t

1 . . .
. . . . . .

1 0

 dt
t

(1.0.1)

on the trivial bundle On+1
Gm

, denoted by Ben+1. It has a regular singularity at 0, and an irregular singularity
at ∞ of slope 1

n+1 . When n = 1, Deligne showed that Be2 cannot underlie a variation of Hodge structures
[Del07, §8], and hence, there does not exist any Hodge filtration on Be2. Instead, Deligne suggested and
studied the concept of irregular Hodge filtrations on irregular connections [Del07], which was further
developed by Esnault, Kontsevich, Sabbah, and Yu in [Sab10, Yu14, SY15, ESY17]. For example, the
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models.
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irregular Hodge filtration on Ben+1 jumps at 0, 1, . . . , n, and the irregular Hodge numbers are all 1, see
for example [CnDS21].

Since then, a solid framework of the theory of irregular Hodge structures and irregular Hodge modules
has been developed in [KS11, Sab18a, FSY22, Moc21]. We will use the fundamental results of these
papers in an essential way here. Rather than using the term irregular Hodge modules, we adopt the
terminology of rescalable integrable mixed twistor D-module, as introduced in [Moc21], cf. Section 3.2. In
particular, the underlying D-module of any rescalable integrable mixed twistor D-module comes equipped
with an irregular Hodge filtration.

The purpose of this paper is to study irregular Hodge theory for certain irregular connections on
principal bundles. More precisely, given any almost simple complex algebraic group Ǧ, we are concerned
with a family of connections (denoted ∇Ǧ) on the trivial Ǧ-bundle over P1\{0,∞} that has been
constructed by Frenkel and Gross in [FG09]. These connections are regular singular at 0 and irregular
singular at ∞. By considering specific representations of Ǧ, one can recover examples such as the Bessel
connection and certain hypergeometric connections, cf. Example 2.1.

Our main result establishes the existence of a rescalable integrable mixed twistor D-module associated
with Frenkel–Gross connections and provides an explicit computation of the corresponding irregular
Hodge numbers.

In the statement of the following theorem, we denote by ρ = 2ρ/2 the half sum of positive coroots of
Ǧ, which can also be considered as the half sum of positive roots of G. We recall a few more facts and
notations around algebraic groups at the end of this introduction.

Theorem 1.1. For an almost simple reductive group Ǧ over C, the Frenkel–Gross connection ∇Ǧ

underlies a unique rescalable integrable mixed twistor D-module ∇H
Ǧ

. The corresponding irregular Hodge
numbers are determined1 by ρ = 2ρ/2, the half sum of positive coroots of Ǧ. Concretely, for each
representation V of Ǧ, the irregular Hodge numbers hαirr of ∇Ǧ(V ) are the dimensions of the eigenspaces
for the eigenvalues 2α of V under the Gm-action Gm

2ρ−→ Ǧ → GL(V ).

Remark 1.2. One of Deligne’s motivations for studying irregular Hodge filtrations is to obtain lower
bounds for p-adic slopes of exponential sums. Let us mention an arithmetic application of Theorem 1.1
for the case of Frenkel–Gross connections, as mentioned in [LT24, Rem. 13.9]. In [XZ22, Thm. 5.3.2], Xu
and Zhu equipped Frenkel–Gross connections with some Frobenius structures and studied their p-adic
slopes —i.e., p-adic valuations of eigenvalues of Frobenius on Frenkel–Gross connections. The traces
of Frobenius are called Kloosterman sums (for reductive groups), which are sums of these eigenvalues.
Xu and Zhu showed that the p-adic slopes are also determined by ρ (except for finitely many points).
Combining their result with Theorem 1.1 yields that the p-adic slopes agree with the irregular Hodge
numbers, which generalizes a theorem of Sperber [Spe80]. ♢

Another motivation for studying irregular Hodge filtration arises from mirror symmetry. As mirrors of
Fano varieties one considers Landau–Ginzburg models, namely, pairs (Y,w) consisting of a quasi-projective
complex variety and a regular function w : Y → A1. A great deal of work has been carried out over the
last decades to establish such miror correspondences, see, e.g., [Iri09] and [RS15, RS17] for the toric case,
and, on the other hand, [Rie08] and [LT24] for the case of homogeneous spaces.

In [KKP17], Katzarkov–Kontsevich–Pantev proposed three kinds of (conjecturally identical) Hodge
numbers of (Y,w), including the irregular Hodge numbers (notice that one of these conjectured equalities
is incorrectly stated though, as can be seen by looking at the case of the mirror of projective spaces). In
particular, this yields a conjectured a relationship comparing the Hodge numbers for Fano varieties and
the irregular Hodge numbers for their Landau–Ginzburg models. As an application of Theorem 1.1, we
confirm this conjecture in Theorem 4.1 for the Fano varieties that are minuscule homogeneous spaces.

The irregular Hodge filtration (as opposed to the irregular Hodge numbers, i.e., the dimension of the
graded pieces of this filtration) is not a priori controlled by our main result. However, we point out in
Section 6 a conjecture that, if shown, would lead to an alternative proof of our main result and would give,
as an additional benefit, that the irregular Hodge filtration itself is also determined by the cocharacter ρ
(in the sense of Definition 3.5).

1See Definition 3.5 for a precise definition.
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Idea of the proof of Theorem 1.1 In order to orient the reader, let us sketch informally the strategy
to show our main result Theorem 1.1. The first ingredient is the fact that the Frenkel–Gross connections
∇Ǧ(V ) are of (exponentially) geometrical origin. In fact, by a theorem of Zhu [Zhu17a], they are eigen
D-modules of Hecke operators, constructed via the method of Heinloth–Ngô–Yun [HNY13]. Using this
strategy, we equip in Section 3.2 the connection ∇Ǧ(V ) with the structure of a rescalable integrable pure
twistor D-module of weight 0. Furthermore, we show that there is a unique lifting of ∇Ǧ to a tensor
functor ∇H

Ǧ
from the category of finite dimensional representations of Ǧ to the category of rescalable

integrable mixed twistor D-modules on Gm (see the discussion before formula (3.2.5)).
Via the functoriality of ∇H

Ǧ
(see Section 2.2), we reduce (Lemmas 3.13 and 3.14) the calculation of

Hodge numbers to that of ∇H
Ǧ

(V ) for simple groups Ǧ and V = Ad(Ǧ), the adjoint representation of Ǧ.
The next step is to express the Frenkel–Gross connections ∇Ǧ(V ) as the Fourier transforms of some

regular singular connections. By the stationary phase principle (cf. [Sab08]), the Fourier transform
of a regular DA1

τ
-module is a DA1

t
-module (where A1

t is the dual affine line of A1
τ ) which is smooth on

Gm,t, regular singular at 0, and irregular singular at ∞ of slope 0 or 1. Frenkel and Gross showed
that ∇Ǧ(V ) has slope 0 or 1/h where h is the Coxeter number of Ǧ. Therefore, we rather work with
∇̃Ǧ(V ) := [h]+∇Ǧ(V ), which has the same irregular Hodge numbers as ∇Ǧ(V ). Using the geometrical
presentation of Frenkel–Gross connections mentioned above, we express ∇̃Ǧ(V ) as the Fourier transform
of some regular DA1

τ
-modules in Proposition 2.5.

By a (filtered) stationary phase formula [SY19], to calculate the irregular Hodge numbers of ∇̃Ǧ(V ),
it suffices to calculate the Hodge numbers of the nearby cycle at infinity of FT−1(j+∇H

Ǧ
(V )), where

j : Gm,t ↪→ A1
t . In general, the inverse Fourier transform of Frenkel–Gross connections involves some

intersection complexes, which makes the Hodge numbers tricky to handle. However, the nilpotent part
of the monodromy of the Frenkel–Gross connections at 0 is quite special, namely principally nilpotent.
Through the stationary phase principle mentioned above, we can easily determine the monodromy of
the inverse Fourier transform FT−1∇̃Ǧ(V ) at ∞ using representation-theoretic information of V . In
particular, when the nilpotent part of the monodromy operator can be decomposed into Jordan blocks
of different sizes, we calculate in Corollary 3.16 the formula of Hodge numbers of the nearby cycle of
FT−1(j+∇H

Ǧ
(V )) at ∞. Since this somewhat artificial condition is always true for adjoint representations,

we are able to conclude the proof of our main result.

Plan of the paper Let us give a brief overview on the content of the paper: In Section 2, we collect
basic properties of Frenkel–Gross connections. In Section 3, we recall preliminaries on rescalable integrable
mixed twistor D-modules and equip Frenkel–Gross connections with such structures. Moreover, we study
the inverse Fourier transforms of ∇̃Ǧ in Section 3.3 and prove Theorem 1.1 in Section 3.4. In Section 4,
we verify a conjecture of Katzarkov–Kontsevich–Pantev for minuscule flag varieties. In Section 5, we
provide concrete calculations of irregular Hodge numbers for certain examples. In Section 6, we make a
conjecture of the shape of the underlying R-modules of ∇H

Ǧ
.

We finish this introduction by fixing some notation that is used throughout this article:

D-modules Throughout the paper, we work with algebraic D-modules. One may consult [HTT08] as a
reference for the notation and results we use. For a smooth variety X over C, we write Db

qc(DX) resp.
Db
h(DX) for the derived category of quasi-coherent resp. of holonomic DX -modules. For a morphism

f : X → Y we have functors f+ : Db
qc(DX) → Db

qc(DY ) and f+ : Db
qc(DY ) → Db

qc(DX). Moreover,
there is the duality functor D : Db

h(DX) → Db
h(DX) that respects Modh(DX). We also define functors

f† := D ◦ f+ ◦ D and f† := D ◦ f+ ◦ D.
We will use at various place the Fourier transformation functor for algebraic D-modules. The most

general definition is when we are starting with a vector bundle E → X, where X is still smooth. Then
we have functors FT±1

X : Db(DE) → Db(DE∨), where E∨ is the dual bundle. They are defined by
FT±1(N) := p2,+(p+

1 N ⊗ E±φ), where p1 : E × E∨ → E and p2 : E ×E∨ → E∨ are the projections and
where φ ∈ OE×E∨ is the canonical pairing. The functors FT±1

X are exact (i.e. they send Mod(DE) to
Mod(DE∨)). Special cases of this definition that we will use are when X = {pt} (in which case we write
FT±1 := FT±1

pt ) or when E ∼= A1 ×X is the trivial line bundle over X (this case is called partial Fourier
transformation with respect to the A1-coordinate).
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We consider the abelian category MHM(X) of algebraic Q-mixed Hodge modules on X (as defined
in [Sai88, Sai90]) and we write DbMHM(X) for its bounded derived category. Let f : X → Y by any
morphism of smooth algebraic varieties, then the functors f+, f† resp. f†[dim(Y )−dim(X)], f+[dim(X)−
dim(Y )] on Db

h(DX) resp. Db
h(DY ) lift to functors

f∗, f! : DbMHM(X) → DbMHM(Y ) resp. f∗, f ! : DbMHM(Y ) → DbMHM(X).

We also denote by D the functor on DbMHM(X) which lifts the above defined holonomic duality functor
on Db

h(DX). We also consider R-mixed Hodge modules (as in [Moc15, §13.5]), and we denote the
corresponding abelian category by MHM(X,R) and by DbMHM(X,R) the corresponding bounded
derived category.

A major part of our considerations will use the category of integrable mixed twistor modules as
constructed by Mochizuki (see [Moc15]). We will postpone reminders on the properties of this category
to Section 3.1, where the motivation for using this category becomes clear.

Simple groups For an almost simple reductive group G over C, we fix a choice of a maximal torus
T and a Borel subgroup B containing T . The root datum of G is the data (X∗,Φ, X∗,Φ∨, ·∨), where
X∗ = X∗(T ) and X∗ = X∗(T ) denote respectively the character and cocharacter groups, where Φ and
Φ∨ denote the root system and coroot system, and where ·∨ : Φ → Φ∨ : α 7→ α∨ is a bijection such that
⟨α, α∨⟩ = 2. For each α ∈ Φ, we denote by uα : Ga ≃ Uα ⊂ G the corresponding root subgroup.

With the choice of T ⊂ B ⊂ G, we have the subset Φ+ (resp. Φ−) of positive (resp. negative) roots in
Φ, i.e. those α ∈ Φ such that Uα ⊂ B (resp. Uα ̸⊂ B). Moreover, we have a subset ∆ ⊂ Φ+ of simple
roots. Every element in Φ+ = −Φ− can be expressed as a non-negative integer linear combination of
elements in ∆. Moreover, we have the root space decomposition (also called the Cartan decomposition) of
the Lie algebra g of G as g = t ⊕

⊕
α gα, where t = Lie(T ) is the Cartan sub-Lie algebra and gα is the

(one-dimensional) α-root space for each α ∈ Φ.
There exists a unique almost simple reductive group Ǧ over C with root datum (X∗,Φ∨, X∗,Φ, (·∨)−1),

up to isomorphism, called the dual group of G. The corresponding maximal torus and Borel subgroup of
G are denoted by Ť ⊂ B̌ ⊂ Ǧ. In particular, X∗(Ť ) = X∗(T ) and X∗(Ť ) = X∗(T ).
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2 Frenkel–Gross connections
In this section, we recall the definition of Frenkel–Gross connections, and discuss their basic properties
such as functoriality and their (exponentially) geometrical interpretation.

2.1 Definition of Frenkel–Gross connections
Let Ǧ be an almost simple group over C. As before, we fix a Borel subgroup B̌ ⊂ Ǧ and a maximal
torus Ť ⊂ Ǧ. For each simple root α∨

i of Ǧ, we denote by X−α∨
i

a basis vector in the root subspace of
ǧ = Lie(Ǧ). Let E = Xθ∨ be a basis vector in the root subspace of ǧ corresponding to the maximal root
θ∨. Let N =

∑
α∨∈∆∨ X−α∨ be the corresponding principal nilpotent element. Then, the Frenkel–Gross

connection, denoted by ∇Ǧ, is a trivial G-bundle whose connection is defined by

∇Ǧ = d + (N + Et) dt
t

(2.1.1)

(Notice that the variable t is called z in [FG09], but we are following a different convention here to be
consistent with the notation used in the theory of mixed twistor modules, especially with the convention
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we employ in Section 6). Alternatively, we can view the Frenkel–Gross connection as a tensor functor

∇Ǧ : Rep(Ǧ) → Conn(Gm,t) (2.1.2)

from the category of finite-dimensional representations of Ǧ to the category of flat connections on Gm.
It was shown in [FG09] that ∇Ǧ has a regular singularity at 0 with principal unipotent monodromy

in the sense of [Kos59], with N being the nilpotent part of the monodromy at 0. Moreover, it has an
irregular singularity at ∞ of slope 1

h , where h = h(Ǧ) is the Coxeter number of Ǧ. For the reason of
slopes at ∞, we also work with

∇̃Ǧ(V ) := [h]+∇Ǧ(V ) (2.1.3)

(where [h] : Gm,t → Gm,t denotes the h-th power map), which has only 0 or 1 as the slopes at ∞, and
can also be viewed as a tensor functor.

Moreover, the Frenkel–Gross connections are both cohomologically rigid [FG09, Thm. 1] and physically
rigid [Yi24, Thm. 1].

Example 2.1. • If Ǧ = SLn+1 and V = Cn+1 the standard representation of SLn+1, then we recover
the Bessel connection in (1.0.1).

• If Ǧ = SO2n+1 and V = C2n+1 the standard representation of SO2n+1, then ∇SO2n+1(V ) is
isomorphic to the hypergeometric connection associated with the differential equation

(t∂t)2n+1 − 2t(t∂t + 1
2 ) = 0,

see [FG09, §6].
♢

2.2 Functoriality of Frenkel–Gross connections
The differential Galois groups of ∇Ǧ are calculated in [FG09, Cor. 9 & 10]. If Ǧ is an almost simple
group of a type listed on the left-hand side of the table below, then the differential Galois group Ggal is
an almost simple group of the type listed on the right-hand side of the same row.

Ǧ Ggal
A2n A2n
A2n−1, Cn Cn
Bn, Dn+1(n ≥ 4) Bn
E7 E7
E8 E8
E6, F4 F4
B3, D4, G2 G2

(2.2.1)

Let Ǧ′ ⊂ Ǧ be two almost simple groups that appear in the same line in the left column of (2.2.1).
Then they have the same differential Galois groups. So we can ask if ∇Ǧ′ is induced by ∇Ǧ. By [XZ22,
Thm. 4.3.3 & Prop. 5.13], we have the following result:

Theorem 2.2. For a choice of N ′ and E′ in ǧ′, there exist N and E in ǧ which coincide with N ′ and
E′ respectively under the inclusion ǧ′ ⊂ ǧ. Moreover, ∇Ǧ is the pushout of ∇Ǧ′ , i.e., the diagram

Rep(Ǧ) Rep(Ǧ′)

Conn(Gm,t)

restriction

∇Ǧ ∇Ǧ′ (2.2.2)

is commutative.

Example 2.3. 1. When Ǧ′ and Ǧ are of the same type, they have the same Lie algebra. We have
the ‘trivial functoriality’ in this case. In other words, we have ǧ = ǧ′ and take N = N ′, E = E′.
Then for each representation V of Ǧ, we have ∇Ǧ(V ) = ∇Ǧ′(V ).
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2. When Ǧ′ = SO2n+1 and Ǧ = SO2n+2, since the standard representation of SO2n+2 restricted as a
representation of SO2n+1 splits into a direct sum of the standard representation of SO2n+1 and a
trivial representation, we have

∇SO2n+2(C2n+2) = ∇SO2n+1(C2n+1) ⊕ OGm
. (2.2.3)

3. When Ǧ′ = G2 and Ǧ = SO7, the standard representation V = C7 of SO7 remains irreducible when
viewed as a representation of G2. In this case, we have

∇G2(V ) = ∇SO7(V ), (2.2.4)

which corresponds to the hypergeometric equation in Example 2.1.

4. When Ǧ′ = F4 and Ǧ = E6, we have a decomposition e6 = f4 ⊕ Ṽ , where Ṽ is the 26-dimensional
representation of F4. Note that dim(E6) = 78 and dim(F4) = 52. Hence, the (nontrivial) 27-
dimensional minuscule E6-representation V restricts to a nontrivial representation of F4, which
therefore has to be C ⊕ Ṽ (cf. [Ada96, Lem. 14.4]). By the functoriality (2.2.2), we have

∇E6(V ) = ∇F4(Ṽ ) ⊕ OGm
(2.2.5)

for compatible choices of N and E on both sides.
♢

2.3 Heinloth–Ngo–Yun’s Kloosterman connections
Heinloth–Ngô–Yun constructed (ℓ-adic) Kloosterman sheaves for reductive groups in [HNY13]. Applying
their construction to D-modules, we also get some Ǧ-connections on Gm.

For each almost simple group G, we fix a maximal torus and a Borel subgroup T ⊂ B ⊂ G. Recall
that the loop group LG (resp. the positive loop group L+G) is the fppf sheaf on the category of k-algebras,
defined by

R 7→ G(R((t)) (resp. R 7→ G(R[[t]])).
The affine Grassmannian Gr = GrG is the fppf-quotient LG/L+G [Zhu17b, Prop. 1.3.6], which is
represented by an ind-scheme.

The group L+G has a natural action on Gr, and the orbits are indexed by dominant cocharacters
λ∨ ∈ Φ∨+. This orbit and its closure are denoted by Grλ∨ and Gr≤λ∨ respectively [Zhu17b, Prop. 2.1.5].
We denote by ICλ∨ the intersection complex on Gr≤λ∨ . For each irreducible representation V of the dual
group Ǧ of highest weight λ∨, we also write ICV = ICλ∨ .

The Beilinson–Drinfeld Grassmanian, π : GR → Gm, over Gm is a global version of affine Grass-
mannians, see for example [Zhu17b, Def. 3.11]. We denote by Grot

m the torus Gm that acts on Gm by
multiplication. The specified action of Grot

m on Gm induces an action of Grot
m on GR such that π is

Grot
m -equivariant. Using this action, we can trivialize the fibration π as

GR ≃ Gr × Gm → Gm,

where Gr is the affine Grassmannian for G, see [HNY13, (5.11)].
Let BunG(1,2) be the moduli stack of G-bundles on Gm with some level structures at 0 and ∞

determined by level groups I(1) and I(2), as defined in [HNY13, §1.2]. Then there is a projection
pr : GR → BunG(1,2), and we have the following diagram in [HNY13, §5.2] or [Yun15, (2.2)] as follows:

GR◦ GR

A1 Gr+1
a BunG(1,2) Gm

F

f

π◦

πpr

ϕsum

(2.3.1)

where ϕ : Gr+1
a ≃ T × I(1)/I(2) ↪→ BunG(1,2) is the inclusion of the big open cell [HNY13, Cor. 1.3 (4)],

the open sub-ind-scheme GR◦ ⊂ GR is the inverse image of the big cell.
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Similar to the Beilinson–Drinfeld Grassmanian, we have GR◦ ≃ Gr◦ × Gm. Let π◦ : GR◦ → Gm and
πGr : GR → Gr be the corresponding projections, and we write ICV,GR◦ := π+

GrICV |Gr◦ . Then the two
isomorphic complexes of D-modules

π◦
† (EF ⊗ ICV,GR◦) ≃ π◦

+(EF ⊗ ICV,GR◦) (2.3.2)

are connections over Gm, denoted by KlǦ(V ), where EF = (OGR◦ , d + dF ) is the exponential D-module.
Furthermore, they can be upgraded to a tensor functor

KlǦ : Rep(Ǧ) → Conn(Gm),

see [HNY13, Thm. 1(1)] or [Yun15, Thm. 2.2.1].
Heinloth–Ngô–Yun conjectured that these D-modules should coincide with Frenkel–Gross’s connections

[HNY13, Conj. 2.16], and this conjecture has been proven in [Zhu17a, §6]:

Theorem 2.4 ([Zhu17a]). The tensor functor KlǦ is isomorphic to the Frenkel–Gross connection ∇Ǧ.

2.4 Homogeneity properties
Let G be an almost simple group of adjoint type, so the half sum of positive coroots ρ∨ is a cocharacter,
and recall that we have fixed a maximal torus T ⊂ G. In [Yun15, §2.6.1], Yun constructed an ind-scheme
S = S1 × Gm isomorphic to GR◦ = Gr◦ × Gm, compatible with the Grot

m -action. In [Yun15, §2.6.4], he
also defined an embedding of 1-dimensional subtorus Gm of T × Grot

m , labeled G(ρ∨,h)
m , by

G(ρ∨,h)
m ∋ t 7→ (ρ∨(t), th) ∈ T × Grot

m .

Hence, the torus G(ρ∨,h)
m inherits an action on GR◦ = Gr◦ × Gm. Moreover, F is G(ρ∨,h)

m -equivariant and
G(ρ∨,h)
m acts on both Gr+1

a and A1 by the multiplication on each factor.
Recall that [h] : Gm,t → Gm,t denotes the h-th power morphism, act : Gr◦ × Gm → Gr◦ the action of

G(ρ∨,h)
m on Gr◦, and F̃ = F ◦ (act × [h]). These morphisms are illustrated in the following diagram:

Gr◦ × Gm,t

Gr◦ × Gm Gr◦ × Gm,t

A1 Gm Gm,t.

F̃

act×[h]

act×id

π◦F π◦

id×[h]

[h]

. (2.4.1)

Then we deduce that

F̃ (x, t) = F (act(x, t), th) = definition of F̃
= F (t · (x, 1)) definition of the action of G(ρ∨,h)

m

= tF (x, 1) F is G(ρ∨,h)
m -equivariant.

Notice that π◦ ◦ (act × id) = π◦, we have

[h]+KlǦ(V ) = [h]+π◦
+(EF ⊗ ICV,GR◦)

∼= π◦
+(EF◦(id×[h]) ⊗ ICV,GR◦)

∼= π◦
+(act × id)+(act × id)+(EF◦(id×[h]) ⊗ ICV,GR◦)

∼= π◦
+(E F̃ ⊗ ICV,GR◦)

∼= π◦
+(Et·F (x,1) ⊗ ICV,GR◦),

(2.4.2)

where in the third isomorphism, we used the fact that act × id is an isomorphism.
Combined with Theorem 2.4, we have the following proposition:
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Proposition 2.5. The connection ∇̃Ǧ(V ) = [h]+∇Ǧ(V ) is of the form

π◦
+(Et·g ⊗ ICV,GR◦),

where g = F |Gr◦×{1} : Gr◦ → A1 : x 7→ F (x, 1), t · g is viewed as a regular function on Gr◦ × Gm,t, and
π◦ is the projection from Gr◦ × Gm,t to Gm,t.

3 The irregular Hodge numbers of Frenkel–Gross connections
3.1 Recollections on rescalable integrable mixed twistor D-modules
Recall from the introduction that we have for any smooth complex algebraic variety M the category
MHM(M,R) of mixed Hodge modules on M with coefficients in R, which is abelian and which is the
category of R-polarized mixed Hodge structures if M is a point. It comes with a forgetful functor, sending
a mixed Hodge module to its underlying regular holonomic DM -module. Furthermore, this forgetful
functor induces a forgetful functor on the bounded derived categories Db(MHM(M),R) → Db

h(DM ),
which is compatible with the six functor formalism (in the sense explained in the introduction).

There is a related category MTMint(M,R) of integrable mixed twistor DM -modules, which can be
regarded as an enhancement of MHM(M). It is built in a parallel way (with major new challenges
though) to the theory of mixed Hodge modules but uses Rint

M = DM [z]⟨z2∂z⟩-modules instead of
DM -modules. The underlying R-modules M of objects in MTMint(M) give rise to (not necessarily
regular) holonomic DM -modules through the functor ΞdR(M ) = M /(z − 1)M . The induced functor
ΞdR : DbMTMint(M) → Db

h(DM ) is also compatible with the six functor formalism and nearby cycle
functors [Moc15, Paragraph after Prop. 14.1.24]. Furthermore, there is a fully faithful exact functor

v : Db(MHM(M)) → DbMTMint(M) (3.1.1)

that is built via the Rees construction and which is compatible with the six functor formalism, as detailed
in [Moc15, Prop. 13.5.5 & Prop. 14.3.29].

We are interested in a category of “irregular Hodge modules” that lies in between MHM(M,R) and
MTMint(M). It was first defined and studied by Sabbah ([Sab18a]). We will rather work with two
related categories (studied by Mochizuki in [Moc21]), namely, the category of rescalable integrable twistor
D-modules and the category of exponential mixed Hodge modules.

Definition 3.1. The category EMHM(M) of exponential mixed Hodge modules on M is defined as
the full subcategory of MHM(A1

θ × M,R) whose objects NH satisfies πM∗N
H = 0 for the projection

πM : A1
θ ×M → M . When M is a point, we recover the category of exponential mixed Hodge structures,

as defined in [KS11]. ♢

The category EMHM(M) can also be defined as the essential image of a projector P∗ : MHM(A1
θ ×

M,R) → MHM(A1
θ ×M,R), which is defined in [Moc21, (155)], see also the discussion right after it.

Now we explain how to embed EMHM(M) as a subcategory of MTMint(M) and to attach an irregular
Hodge filtration to its objects. Mochizuki constructed a functor

u : MTMint(A1
τ ×M) → MTMint(M) (3.1.2)

in [Moc21, §11.4.4] by sending M to an object u(M ) such that ι!u(M ) = ψ
(1)
τ−1M .

Definition 3.2 ([Moc21, Def. 11.38]). The essential image of u is a full subcategory of MTMint(M),
called rescalable mixed twistor DY -modules and denoted by MTMint

resc(M). ♢

Let FTY : MTMint(A1
θ ×M) → MTMint(A1

τ ×M) be the partial Fourier transform [Moc21, §10.2] of
integrable twistor modules relative to M where τ denotes the coordinate of the affine line dual to A1

θ.
Then Mochizuki proved the following theorem:

Theorem 3.3 ([Moc21, Thm. 11.45]). The functor

B : MHM(A1
θ ×M,R) u◦FTY ◦v−−−−−−→ MTMint(M), (3.1.3)

induces an equivalence of categories of B∗ : EMHM(M) ∼−→ MTMint
resc(M).
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Moreover, Mochizuki showed that the functor B is compatible with the six functors formalism, nearby
and vanishing cycle functors, and duality in [Moc21, Props. 11.46-11.48]. In particular, these operators
preserve rescalable integrable mixed twistor D-modules.

As explained above, the de Rham functor ΞdR : MTMint
res(M) ⊂ MTM(M) → Modh(DY ) sends a

rescalable integrable twistor D-module M to the holonomic D-module M/(z − 1)M. For any T ∈
MTMint

res(M) one can then equip ΞdR(T ) with an irregular Hodge filtration F •
irr, see [Sab18a, Thm. 0.3]

and [Moc21, Cor. 1.6]. In particular, we denote by hpirr the irregular Hodge numbers, i.e. the (generic)
ranks of the graded pieces of F •

irrΞdR(T ).
To end this section, we collect a unicity result, which will be needed later.

Lemma 3.4. Let M be a smooth quasi-projective variety, and let N be a semi-simple holonomic DY -
module. Then there is up to isomorphism at most one object T ∈ MTMint

resc(M) of weight 0 such that
ΞdR(T ) ∼= N .

Proof. We choose a compactification jM : M ↪→ M , where M is smooth and projective. Then the
intermediate extension jM,†+N is a semi-simple holonomic DM -module. Now suppose that we have
T1, T2 ∈ MTMint

resc(M) such that ΞdR(T1) ∼= ΞdR(T2). According to [Moc15, Thm. 14.3.16 & Prop.
14.3.17], for i ∈ {1, 2}, we have the objects jM,∗Ti and jM,!Ti in MTM(M) and by loc.cit., Proposition
14.3.18, there is a morphism jM,!Ti → jM,∗Ti. Denote by jM,!∗Ti the respective images in MTM(M). Since
taking the de Rham functor ΞdR commutes with taking direct images (with and without proper support)
of integrable mixed twistor modules resp. of holonomic D-modules, we see that ΞdR(jM,!∗Ti) = jM,†+N
for both i = 1, 2. Now by [Moc11, Thm. 1.4.4], there is a unique (wild and pure) analytic twistor module
T on M such that ΞdR(T ) = (jM,†+N)an. Hence, we obtain an isomorphism

ϕ : (jM,!∗T1)an −→ (jM,!∗T2)an,

but since M is projective, the categories MTM(M)an and MTM(M) are equivalent (this follows, e.g.,
from [Moc15, Lem. 14.1.2]). Therefore we obtain an isomorphism

ϕalg : jM,!∗T1 −→ jM,!∗T2,

which restricts to an isomorphism
ϕalg

|M : T1 −→ T2,

of (algebraic) mixed twistor modules on M . If we now consider Ti as integrable twistor modules on M ,
then by [Sab18a, Rem. 1.39], ϕalg

|M is also an isomorphism in MTMint(M). Now since MTMint
res(M) is a a

full subcategory of MTMint(M), ϕ|M is an isomorphism of (algebraic) rescalable integrable mixed twistor
D-modules, as required.

3.2 Rescalable integrable mixed twistor D-modules attached to ∇Ǧ(V ).
In this section, we construct objects in MTMint

res(Gm,t), which will be sent to Frenkel–Gross connections
under the de Rham functors.

For a regular function f : U → A1, there exists an integrable twistor D-modules T f/z ∈ MTMint(U),
which is sent to the exponential DU -module Ef = (OU , d + df) under the de Rham functor. See [Sab18a,
Discussion before Thm. 0.2] for details. One can verify that it is rescalable, as it is the image of T τ ·f/z

under the functor u mentioned above in (3.1.2) (notice that T τ ·f/z is a smooth RA1
τ ×U -module, therefore,

ψ
(1)
τ−1T τ ·f/z = T f/z).

The case of ∇Ǧ(V ) Let V be an irreducible Ǧ-representation of the highest weight λ∨, then Gr≤λ∨ has
dimension dV := ⟨2ρ, λ∨⟩. Then the mixed Hodge module ICH

V,GR◦(dV +1
2 ) has weight 0. Taking notation

from (2.3.1), we define
∇H
Ǧ

(V ) := π◦
∗

(
T F/z ⊗ v(ICV,GR◦)

(
dv+1

2
))

(3.2.1)

where v is the Rees functor (3.1.1). By the compatibility of the six functor formalism with the de Rham
functor ΞdR we conclude from (2.3.2)

ΞdR

(
∇H
Ǧ

(V )
)

= π◦
+(EF ⊗ ICV,GR◦)|Gm,t = ∇Ǧ(V ).
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Hence, we call ∇H
Ǧ

(V ) the rescalable integrable twistor D-module attached to ∇Ǧ(V ).
Moreover, in (2.3.2), the forget support morphism π◦

† (EF ⊗ ICV,GR◦)|Gm,t
→ π◦

+(EF ⊗ ICV,GR◦)|Gm,t

is an isomorphism. As ΞdR is an exact functor, the forget support morphism

π◦
!

(
T F/z ⊗ v(ICV,GR◦)

)
|Gm,t

→ π◦
∗

(
T F/z ⊗ v(ICV,GR◦)

)
|Gm,t

is also an isomorphism. Hence, by the formalism of weights, ∇H
Ǧ

(V ) is a pure twistor module of weight 0.

The case of ∇̃Ǧ(V ) Let [h] : Gm,t → Gm,t be the h-th power map. We define

∇̃H
Ǧ

(V ) := [h]∗∇H
Ǧ

(V ) ∈ MTMint
resc(Gm,t). (3.2.2)

By the compatibility of the six functor formalism with the de Rham functor ΞdR we conclude that

ΞdR

(
∇̃H
Ǧ

(V )
)

= [h]+∇Ǧ(V ) = ∇̃Ǧ(V ).

Hence, we call ∇̃H
Ǧ

(V ) the rescalable integrable twistor D-module attached to ∇̃Ǧ(V ).
When Ǧ is simply-connected (i.e. G is adjoint), we have by homogeneity (see Proposition 2.5) that

∇̃H
Ǧ

(V ) = π◦
∗

(
T (t·g)/z ⊗ v(ICV,GR◦)

(
dV +1

2
))

|Gm,t . (3.2.3)

The case of ∇̃Ǧ(V ) ⊗ Lχ For a rational number a ∈ Q\Z, let χ = exp(2πia) ̸= 1 and let Lχ be the
connection defined by Lχ := (OGm,t

,d + adt
t ) (sometimes called Kummer module). We then have the

DA1
t
-module ∇̃Ǧ(V )χ := j+(∇̃Ǧ(V ) ⊗ Lχ). On the other hand, Lχ underlies a pure complex Hodge

module of rank 1 that we denote by LH
χ .

We then consider the rescalable integrable mixed twistor D-module

∇̃H
Ǧ

(V )χ := j∗∇̃H
Ǧ

(V ) ⊗ j∗v(LH
χ ) ∈ MTMint

resc(A1
t ) (3.2.4)

that is attached to ∇̃Ǧ(V )χ in the sense that ΞdR(∇̃H
Ǧ

(V )χ) = ∇̃Ǧ(V )χ.

Functoriality Notice that ∇H
Ǧ

(V ) = π◦
∗
(
ICH

V,GR◦ ⊗T F/z
)

can be seen as Hecke-eigen twistor D-modules
of the Hecke operator HkV in [HNY13, §2.3], i.e., by replacing the Artin–Schreier sheaf Lψ(x) with T x/z

in the definition of Aϕ,χ in [HNY13, §2.2] and then applying the Hecke operator in the sense of twistor
D-modules to Aϕ,χ, we recover ∇H

Ǧ
(V ) are Hecke-eigen twistor D-modules. As we can compose the Hecke

operators, and have HkV ◦ HkW = HkV⊗W for any two representations of Ǧ, we deduce that ∇H
Ǧ

can be
upgraded to a tensor functor

∇H
Ǧ

: RepǦ → MTMint
resc(Gm,t). (3.2.5)

As explained in Section 3.2, each object in the category of rescalable mixed twistor modules is equipped
with an irregular Hodge filtration in a functorial way. When restricted to smooth objects (that is, mixed
twistor D-modules whose image under the de Rham functor are smooth D-module, i.e. connections), this
gives a tensor functor

MTMint
sm,resc(Gm,t)

IrrFil−−−→ FilGm,t

to the category of vector bundles on Gm,t filtered by subbundles. Since the essential image of ∇H lies in
MTMint

sm,resc(Gm,t), we can consider the composition

Rep(Ǧ) ∇H

−−→ MTMint
sm,resc(Gm,t)

IrrFil−−−→ FilGm,t .

Similar to [Lov17, §3.2.4], we call a functor F : Rep(Ǧ) → FilGm
an η/k-filtration for some dominant

cocharacter η and some integer k, if for each representation V of Ǧ, the decreasing filtration by subbundles
F (V ) is given by

Fα∇Ǧ(V ) := OGm ⊗C
(⊕

i≥k·α
Vi

)
,

where V =
⊕

i∈Z Vi is the decomposition of V induced by the Gm-action ηV : Gm
η−→ Ǧ → GL(V ).
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Definition 3.5. We say that the irregular Hodge filtrations of ∇H
Ǧ

are determined by η/k for some
dominant cocharacter η : Gm → Ǧ and a positive integer k if the composition IrrFil ◦ ∇H is an η/k-
filtration. We say that the irregular Hodge numbers of ∇H

Ǧ
are determined by η/k if for any V ∈ Rep(Ǧ)

the ranks of grα(IrrFil ◦ ∇H(V )) equal the dimensions of the eigenspaces Vk·α of the operator η(V ). ♢

Clearly, if the irregular Hodge filtration of ∇H
Ǧ

is determined by η/k, then so are its irregular Hodge
numbers. The converse is, of course, not true in general (see also Conjecture 6.2 below).

Using these notions, we can summarize the above discussion as follows.

Proposition 3.6. The Frenkel–Gross connection ∇Ǧ underlies a unique rescalable integrable mixed
twistor D-module ∇H

Ǧ
of weight 0, i.e., a tensor functor

∇H
Ǧ

: RepǦ → MTMint
resc(Gm,t).

In particular, there is a uniquely defined irregular Hodge filtration on ∇Ǧ, and it is determined by η/k
for some cocharacter η and some integer k.

Proof. We already constructed rescalable integrable mixed twistor D-module ∇H
Ǧ

on ∇Ǧ in (3.2.5). To
show the uniqueness of ∇H

Ǧ
, we decompose any representation W of Ǧ as W =

⊕
Wi ⊗ Mi with Wi

irreducible and Mi the multiplicities. By the functoriality of ∇H
Ǧ

, we have

∇H
Ǧ

(W ) =
⊕

∇H
Ǧ

(Wi) ⊗MH
i ,

with MH
i being trivial. As in Lemma 3.4, there is at most one rescalable integrable mixed twistor

D-modules of weight 0 on an irreducible connection on Gm. So each ∇H
Ǧ

(Wi) is unique. Therefore,
∇H
Ǧ

(W ) is also unique.
At last, since each ∇Ǧ(V ) is a connection on Gm,t, its associated rescalable integrable mixed twistor

D-module gives rise to an irregular Hodge filtration (by subbundles) in a functorial way. In other words,
we have a tensor functor from RepǦ to ( 1

kZ-indexed) filtered vector bundles on Gm,t for some integer k.
By [Lov17, Lem. 3.3.1], this functor is then necessarily an η/k-filtration for some cocharacter η.

3.3 Inverse Fourier transforms of ∇̃Ǧ(V )
In this section, we study the (inverse) Fourier transform of the Frenkel-Gross connection (resp. of its
variant ∇̃Ǧ or some twisted version thereof). From (2.3.2) we will deduce that when using a non-trivial
twisting, they underly pure polarizable Hodge modules. This property will be pivotal to our computations
of Hodge numbers in the next section.

We first work in a slightly more general geometric framework to simplify our proof. The situation will
be specified in the case of Frenkel-Gross connections at the end of this section.

The setup Let Y be a quasi-projective variety over C and g a regular function on Y . We consider the
product Y × A1

t and we denote by prt resp. by prY the projection Y × A1
t → A1

t resp. the projection
Y × A1

t → Y . We have the following diagram:

Y × A1
t

A1 A1
t .

t·g prt

We start by collecting a few general facts about Fourier transforms of (complexes of) DA1
t
-modules that

we will use later. Recall from the introduction that the Fourier transform of a an object M• ∈ Db
h(A1

t )
denoted by FT±1(M•), is the complex of holonomic DA1

s
-modules defined by

prs+(pr+
t M• ⊗ E±t·s),
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where prt and prs are the projections from A1
t × A1

s to A1
t and A1

s respectively. Similarly, we can define
the Fourier transform of M• with compact support by

FT±
† (M•) := prs†(pr+

t M• ⊗ E±t·s).

The two kinds of Fourier transforms are interchanged by the duality functor

D ◦ FT−1 = FT† ◦ D, (3.3.1)

and the forget support morphism induces an isomorphism FT†(M) ∼−→ FT(M), see [Mal91, Appendice 2
Proposition 1.7], so that we also have

D ◦ FT−1 = FT ◦ D. (3.3.2)

Moreover FT−1 ◦ FT = id.
Proposition 3.7. For any N ∈ Modh(DY ) we have isomorphisms in Db(DA1

s
):

FT−1(prt+(pr+
Y N ⊗ Et·g)) ∼= g+N

and
FT−1(prt†(pr+

Y N ⊗ Et·g)) ∼= g†N,

here we see g as a morphism g : X → A1
s.

Proof. It suffices to calculate FT(g+N) and FT(g†N). Consider the following diagram:

Y × A1
t A1

s × A1
t

Y A1
s A1

t

prY

(g×id)

prt

prs prt
g

Then we have

FT (g+N) = prt+
(
pr+
s g+N ⊗ Es·t)

= prt+
(
(g × idt)+ pr+

Y N ⊗ Es·t) smooth base change

= prt+ ◦ (g × idt)+

(
pr+
Y N ⊗ (g × idt)+ Es·t

)
projection formula

= prt+ ◦ (g × idt)+
(
pr+
Y N ⊗ Eg·t) definition of Es·t

= prt+
(
pr+
Y N ⊗ Eg·t) .

In the same way, we obtain
FT−1 (g+N) = prt+

(
pr+
Y N ⊗ E−g·t) . (3.3.3)

Using the usual commutation rules of the duality functor with direct and inverse images, as well as
the commutation of duality with Fourier transformation discussed above, we derive from the previous
computation the following:

FT(g†DY (N)) = FT(DA1
s
(g+N))

= DA1
t
(FT−1(g+N)) use formula (3.3.2)

= DA1
t

prt+
(
pr+
Y N ⊗ E−g·t) use formula (3.3.3)

= prt† DY×A1
t

(
pr+
Y N ⊗ E−g·t)

= prt†
(

pr+
Y DYN ⊗ DY×A1

t
E−g·t

)
= prt†

(
pr+
Y DYN ⊗ Eg·t) E−g·t is locally free.

Since this holds for any N , we obtain FT(g†N) = prt†
(
pr+
Y N ⊗ Eg·t), as required.
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Let j : Gm,t ↪→ A1
t be the inclusion and let N be a DY -module. Consider

F := j+ prt+(Et·g ⊗ pr+
Y N),

which is a priori an object in Db(DGm,t
). Recall that for a ∈ Q and χ = exp(2πia), we write Lχ :=

(OGm,t
,d + adt

t ) and we put Fχ := F ⊗ Lχ. We will consider the following geometric situation:

Assumption 3.8. We take a ∈ Q \ Z, i.e. χ ̸= 1, and subject the above objects to the following four
conditions.

1. F is a DGm,t-module concentrated in degree 0, regular singular at 0, and irregular singular at ∞
with slopes 1. Notice that the same assumption then automatically holds for Fχ.

2. The forget support morphism

j+prt†(E±t·g ⊗ pr+
Y N) → j+prt+(E±t·g ⊗ pr+

Y N) = F (3.3.4)

induces an isomorphism of DGm,t
-modules concentrated in degree 0.

3. The morphism
j†(Fχ) → j+(Fχ) (3.3.5)

is an isomorphism, so in particular both j†(Fχ) and j+(Fχ) are isomorphic to j†+(Fχ).

4. N underlies a pure Hodge module NH ∈ MHM(Y ) of weight dim Y .

♢

We continue our discussion of various Fourier transforms. We restrict, however, from now on our
attention to objects satisfying the above four conditions.

For two DA1-modules M and N , the additive convolutions are DA1-modules defined as

M ⋆+ N := sum+(M ⊠N) and M ⋆† N := D(D(M) ⋆+ D(N)),

where sum: A1 × A1 → A1 is the summation map.

Proposition 3.9. Under Assumption 3.8 we have

FT−1(j+Fχ) = g+N ⋆+ j+Lχ−1 (3.3.6)

and
FT−1(j†Fχ) = g†N ⋆† j† Lχ−1 . (3.3.7)

Here ⋆+ and ⋆† are the additive convolutions.

Proof. Since the Fourier transform interchanges the tensor product and the additive convolution, by
[DS13, Equation (1.1.2)] and the first equation in Proposition 3.7, we have

FT−1(prt+(pr+
Y N ⊗ Et·g) ⊗ j+Lχ)

= FT−1(prt+(pr+
Y N ⊗ Et·g)) ⋆+ FT−1(j+Lχ)

= g+N ⋆+ j+Lχ−1 .

Notice that the adjunction morphism id → j+j
+ induces a morphism

prt+(pr+
Y N ⊗ Et·g) → j+F

whose kernel and cokernel are supported at 0. Hence, we deduce an isomorphism

prt+(pr+
Y N ⊗ Et·g) ⊗ j+Lχ ≃ j+Fχ.

Combining the above identities, we deduce (3.3.6).
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Similarly, we have

FT(prt+(pr+
Y N ⊗ E−t·g) ⊗ j+Lχ−1) = FT(prt+(pr+

Y N ⊗ E−t·g)) ⋆+ FT(j+L−1
χ ) = g+N ⋆+ j+Lχ.

Notice that
prt+(pr+

Y N ⊗ E−t·g)|Gm ≃ prt†(pr+
Y N ⊗ E−t·g)|Gm = DGm(F) = F∨,

we argue similarly above that

prt+(pr+
Y N ⊗ E−t·g) ⊗ j+Lχ−1 = j+(Fχ)∨.

So, we deduce that
FT(j+(Fχ)∨) = g+N ⋆+ j+Lχ

Applying the duality functor, we have

FT−1
† (j†Fχ) = DA1 ◦ FT(j+(Fχ)∨)

= DA1(g+N ⋆+ j+Lχ)
= DA1(DA1(g†N) ⋆+ DA1(j†Lχ−1))
= g†N ⋆† j†Lχ−1 ,

which is (3.3.7).

Mixed Hodge modules on the inverse Fourier transformation Notice that g†N⋆†j†Lχ resp. g+N⋆+
j+Lχ underlies a mixed Hodge module

sum!
(
g!N

H ⊠ j!LH
χ

)
resp. sum∗

(
g∗N

H ⊠ j∗LH
χ

)
,

where NH is the pure Hodge module on Y of weight dimY with underlying D-module N , and LH
χ is the

pure complex Hodge module on Gm of weight 1 with underlying D-module Lχ. We therefore obtain the
following.

Lemma 3.10. Under Assumption 3.8, the DA1 -module g+N ⋆+ j+Lχ underlies a pure Hodge module of
weight dimY + 1 on A1.

Proof. It follows from (3.3.4), (3.3.5), (3.3.6), and (3.3.7) that the forget support morphism

g†N ⋆† j†Lχ → g+N ⋆+ j+Lχ, (3.3.8)

being the composition
FT−1(j†Fχ) → FT−1(j†+Fχ) → FT−1(j+Fχ),

is an isomorphism.
By the properties of conservation of weights of mixed Hodge modules (see [Sai89, Prop. 1.7]), the two

mixed Hodge modules sum!
(
g!N

H ⊠ j!LH
χ

)
and sum∗

(
g∗N

H ⊠ j∗LH
χ

)
are mixed of weight ≤ dimY + 1

and ≥ dimY + 1 respectively. Since (3.3.8) can be lifted to an isomorphism of mixed Hodge modules, we
conclude that they are pure Hodge modules of weight dimY + 1.

The case of Frenkel–Gross connections Let Ǧ be a simply connected group (i.e., G an almost
simple group of adjoint type) and V a representation of Ǧ. We use notation from (2.4.1) and consider the
case that X = Gr◦, g = F (x, 1), prt is the projection to A1

t such that prt ◦ (id × j) = j ◦ π◦, N = ICV |Gr◦

as follows:
Gr◦ × Gm Gr◦ × A1

t

A1 Gm A1
t .

π◦t·g

id×j

prt

j

. (3.3.9)

From the discussion above, we deduce the following corollary:
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Corollary 3.11. The inverse Fourier transformation FT−1 ◦ j+(∇̃Ǧ(V ) ⊗ Lχ) is a regular holonomic
DA1 -module. If χ ̸= 1, it can be lifted to a pure Hodge module M̃H

χ on A1 of weight w := dim Grλ∨ + 1 =
⟨2ρ, λ∨⟩ + 1.

Proof. First note that t · g can be extended to Gr◦ × A1
t . Recall that ICV,GR◦ = pr+

Y ICV,Gr◦ via the
projection prY : GR◦ = Gr◦ × Gm → Gr◦. It then follows from Proposition 2.5 that

∇̃Ǧ(V ) = π◦
+(Et·g ⊗ pr+

Y ICV,Gr◦).

It can be verified that the conditions of Assumption 3.8, as outlined at the beginning of Section 3.3,
are satisfied for this choice of (Y, g,N,F = ∇̃Ǧ(V ) ⊗ Lχ). Indeed, given our choices, the first and last
conditions are straightforward. The second condition is verified by (2.3.2), and the third condition holds
because ∇G is regular singular and has principal unipotent monodromy at 0.

It then follows from Proposition 3.9 and Lemma 3.10 that FT−1 ◦ j+(∇̃Ǧ(V ) ⊗ Lχ) underlies a pure
Hodge module on A1 of weight announced in the statement of the corollary.

Corollary 3.12. Assume that ∇Ǧ(V ) is an irreducible connection on Gm,t. Then there is a unique
rescalable integrable mixed twistor D-modules of weight 0 on A1

t with underlying DA1
t
-module equal to

j†+∇̃Ǧ(V ). Furthermore, FT ◦ v
(
M̃H
χ

)
coincides with the rescalable mixed twistor D-module up to a

Tate twist defined in (3.2.4), where FT is the Fourier transform for MTMint(A1).

Proof. Apply Lemma 3.4 for Y = A1 and for N = j†+∇̃Ǧ(V ) as well as for N = j+(∇̃Ǧ(V ) ⊗ Lχ).

3.4 The irregular Hodge numbers of ∇Ǧ

This section aims to prove Theorem 1.1. We first make some reductions on the proof of Theorem 1.1 in
the following lemmas:

Lemma 3.13. Let G1 and G2 be two isogenous almost simple groups. If the irregular Hodge filtrations
of ∇H

Ǧ1
are determined by ρG1 , then the irregular Hodge filtrations of ∇H

Ǧ2
are determined by ρG2 .

Proof. Without loss of generality, we may assume that we have an isogeny π : Ǧ1 → Ǧ2 or π : Ǧ2 → Ǧ1.
In the former case, we deduce the irregular Hodge filtrations of ∇H

Ǧ2
by the ‘trivial’ functoriality, see the

discussion in Section 2.2.
In the latter case, assume that the irregular Hodge filtration of ∇H

Ǧ2
is determined by η/k. By the

‘trivial’ functoriality again, η/k will induce 2ρG1 on Ǧ1, i.e.,

π ◦ η2 = (2ρG1)k.

Hence, the cocharacter
π ◦ (η2 · (2ρG2)−k)

is trivial, which forces η2 · (2ρG2)−k to take values in kerπ. Since there is no nontrivial homomorphism
from Gm to finite groups, we conclude that

η2 = (2ρG2)k,

which means that η/k = ρG2 .

Lemma 3.14. If the irregular Hodge numbers of ∇H
Ǧ

(V ) are given by ρ(V ) for one faithful representation
V of Ǧ, then the irregular Hodge numbers of ∇H

Ǧ
are given by ρ.

Proof. As algebraic vector bundles on Gm are trivial, we can (non-canonically) identify any basis of
∇Ǧ(L) with a basis of L for any representation L. In particular, the irregular Hodge filtration on ∇Ǧ(L)
determines a flag (indexed by 1

kZ)
Fα/k ⊂ . . .∇Ǧ(L)

for α ∈ Z, such that hα = rk Fα/k/F(α−1)/k.
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By Proposition 3.6, the irregular Hodge filtration is determined by η/k for some cocharacter η of
Ǧ and an integer k. It follows that η(V ) and ρk(V ) determines the same flag of V . As V is faithful,
η and ρk correspond to the same parabolic subgroup P̌ of Ǧ up to conjugacy. It follows that for any
representation W of Ǧ, η(W ) and ρk(W ) determine again the same flag on W . Hence, the irregular
Hodge numbers of ∇Ǧ(W ) are determined by ρ(W ).

Now, we need to calculate the irregular Hodge numbers of some specific representations V . Similar to
[Qin24, §5.2.1], we consider the case where the local monodromy of ∇Ǧ(V ) at 0 consists of Jordan blocks
of different sizes.

Proposition 3.15. Assume that V is irreducible and the local monodromy of ∇Ǧ(V ) at 0 consists of
Jordan blocks of sizes r1 < r2 < · · · < rk, then up to a global shift, the irregular Hodge numbers of
∇Ǧ(V ) are given by

hpirr := #{(i, a) | 2p = ri + w − 1 − 2a, 0 ≤ a ≤ ri}

for p ∈ Z, where w := ⟨2ρ, λ∨⟩ + 1.

Proof. Let ∇̃Ǧ(V ) = [h]+∇Ǧ(V ), Lχ and g be as in the previous section. In order to prove the proposition,
it suffices to calculate the irregular Hodge numbers of ∇̃Ǧ(V ) ⊗ Lχ for any χ ̸= 1.

Recall that j : Gm ↪→ A1 denotes the canonical embedding. Notice that ∇̃Ǧ(V ) ⊗ Lχ is regular at 0,
with quasiunipotent monodromy of eigenvalue χ. So we have

j†(∇̃Ǧ(V ) ⊗ Lχ) = j†+(∇̃Ǧ(V ) ⊗ Lχ) = j+(∇̃Ǧ(V ) ⊗ Lχ).

Recall also that M̃χ := FT−1j†+(∇̃Ǧ(V ) ⊗ Lχ) is the inverse Fourier transform of j†+(∇̃Ǧ(V ) ⊗ Lχ),
which can be lifted to a pure Hodge module M̃H

χ by Corollary 3.11.
Let ψt (∇̃Ǧ(V ) ⊗ Lχ) be the nearby cycle module at 0 of j+(∇̃Ǧ(V ) ⊗ Lχ). Notice that the local

monodromy of ∇̃Ǧ(V ) at 0 is also unipotent with Jordan blocks of sizes r1 < · · · < rk. So that of
ψt (∇̃Ǧ(V ) ⊗ Lχ) is quasiunipotent with eigenvalue χ and with Jordan blocks of sizes r1 < · · · < rk.

By construction, we have M̃χ = FT−1j†+(∇̃Ǧ(V ) ⊗ Lχ). Applying the (inverse) stationary phase
formula (cf. [Mal91, Prop. VII.2.4] or [Sab06, Prop. 2.3]), it follows that

ψt (∇̃Ǧ(V ) ⊗ Lχ) = ϕ1/τM̃χ = ψ1/τ,−1M̃χ (3.4.1)

and the corresponding nilpotent part of the monodromy operator N has Jordan blocks of sizes r1 < · · · < rk
respectively. In particular, rk M̃χ = r.

By our assumption, the (non-zero) primitive parts of the Lefschetz decomposition of ψ1/τM̃
H
χ ,

denoted by Pr1 , . . . , Prk
, are one-dimensional and are of Hodge–Tate type. Since M̃H

χ is pure of weight
w = ⟨2ρ, λ∨⟩+1, the primitive parts Pr1 , . . . , Prk

are pure of weights r1 +w−1, . . . , rk+w−1 respectively.
In other words,

Pri = grWri+w−1Pri

for 1 ≤ i ≤ k. Then, by the Lefschetz decomposition, for each ℓ ∈ Z, the graded quotient grWℓ ψ1/τM̃
H
χ is

Hodge–Tate of dimension
#{(i, a) | ℓ = ri + w − 1 − 2a, 0 ≤ a ≤ ri}.

Moreover, we have

dim grpFψ1/τM̃
H
χ = dim grW2pψ1/τM̃

H
χ .

Since the eigenvalues of M̃H
χ at ∞ are different from 1, we conclude using [SY19, (7)] that

dim grp+a
Firr

(∇̃Ǧ(V ) ⊗ Lχ) = dim grpFψ1/τ,−1M̃
H
χ = #{(i, a) | 2p = ri + w − 1 − 2a, 0 ≤ a ≤ ri},

where a is a rational number such that χ = exp(2πia). Notice that the irregular Hodge numbers of
∇̃Ǧ(V ) ⊗ Lχ agree with those of ∇̃Ǧ(V ) (as well as ∇Ǧ(V )) up to a global shift. Therefore, we have
shown the formula for the irregular Hodge numbers of ∇Ǧ(V ) as announced in the statement.
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Corollary 3.16. Assume that ∇Ǧ(V ) is irreducible and its local monodromy at 0 consists of Jordan
blocks of different sizes. Then the Hodge numbers of ∇Ǧ(V ) are determined by ρ(V ).

Proof. Let V =
⊕

d∈ 1
2Z
Vd be the degree decomposition of V with respect to 2ρ : Gm → Ǧ, such that

2ρ(t) acts on Vd by multiplication by t2d. There is a decreasing filtration induced by ρ, i.e., the filtration
defined by

F pρ :=
⊕
p≤2d

Vd

for p ∈ Z. Equivalently, 2ρ can be seen as an element in ǧ, which induces an endomorphism 2ρ(V ) on V
such that v ∈ Vd if and only if 2ρ(V ) · v = 2dv.

Notice that one can upgrade the principal nilpotent operator N to a sl2-triple (E,F,H) such that
F = N . Recall that ρ can equivalently be written as ρ =

∑n
i=1 ωi, the sum of fundamental coweights of

Ǧ satisfying ⟨α∨
i , ωj⟩ = δij for {α∨

1 , . . . , α
∨
n} = ∆ an ordering of the simple roots of Ǧ. Hence, we have

[N, ρ] =
∑n
i,j=1

[
X−α∨

i
, ωj ] =

∑n
i,j=1⟨−α∨

i , ωj⟩X−α∨
i

= −N. (3.4.2)
So, we deduce that

H = 2ρ. (3.4.3)
In particular, we have

ρ(V )N(V )v = N(V )ρ(V )v +N(V )v = (d+ 1)N(V )v
for v ∈ Vd. Hence, one has for d ∈ 1

2Z that

N(V )F 2d
ρ V ⊂ F 2d+2

ρ V.

On the other hand, viewing V as the representation of sl2 via the composition sl2 → ǧ → gl(V ), we have
N(V )2d : gr−2d

Fρ
V = V−d

∼−→ Vd = gr2d
Fρ
V

when d ≤ 0 by the representation theory of sl2 [Hum72, p.33 Thm.]. So F 2•
ρ is the same as the

monodromy-weight filtration on V with respect to N(V ).
Notice that ψt (∇̃Ǧ(V ) ⊗Lχ) with its monodromy-weight filtration is abstractly isomorphic to V with

its monodromy-weight filtration with respect to N(V ), and so is ψ1/τ,−1M̃
H
χ by the identification from

(3.4.1). Therefore, combining with Proposition 3.15, the irregular Hodge numbers of ∇Ǧ(V ) are given by
ρ(V ).

To achieve the proof of Theorem 1.1, it suffices to show the existence of representations V such that
the Jordan blocks of N(V ) have different sizes. In fact, adjoint representations are what we are looking
for, as suggested by the following lemma:
Lemma 3.17. For a simple group Ǧ, the nilpotent operator N acting on the adjoint representation
V = g has Jordan blocks of different sizes.
Proof. Let V be the adjoint representation V = ǧ = Lie(Ǧ) of Ǧ and l be the rank of ǧ. Notice that N ∈ ǧ
is principally nilpotent, which can be enhanced into a principal sl2. By [Kon59, §6.5 & Cor. 8.7], we can
decompose V = ǧ into

⊕
i Vki , where dimVki are (2ki + 1)-dimensional irreducible sl2-representations,

and the numbers n1 ≤ . . . ≤ nl are the exponents of ǧ.
By [Bou02, Plate I-VII], the exponents of ǧ are distinct numbers. So the dimensions of irreducible

representations (as well as the Jordan blocks of N) are distinct numbers.

Proof of Theorem 1.1 The rescalable integrable mixed twistor D-module on ∇Ǧ exists by Proposi-
tion 3.6. To calculate its irregular Hodge numbers, it suffices to prove the theorem for one type in each
row of diagram (2.2.1) by the functoriality (2.2.2). So we assume that Ǧ is of type An, Bn, E7, E8, and
F4.

For each type, by Lemma 3.13, it suffices to prove the theorem for one almost simple group. So we
prove the theorem for simple groups for each type.

By Lemma 3.14, it suffices to know the Hodge numbers of ∇Ǧ(V ) for one faithful representation
of Ǧ. So we choose V as the adjoint representation of these groups. From Lemma 3.17, as ∇Ǧ(V ) is
irreducible and its local monodromy at 0 have Jordan blocks of different sizes, we conclude the proof by
Corollary 3.16.
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4 On a conjecture of Katzarkov–Kontsevich–Pantev
By a Landau–Ginzburg model, we mean a pair (Y,w) consisting of a quasi-projective variety Y and a
regular function w : Y → A1. In [KKP17, Conjecture 3.7.], the authors defined Landau–Ginzburg Hodge
numbers of (Y,w) as

fp,q(Y,w) := dimC Hp(Z,ΩqZ(logD,w)),

where Z is a smooth proper compactification of Y such that D := Z\Y is a simple normal crossing divisor
and w extends to a morphism w̃ : Z → P1, and ΩqZ(logD,w) is the sheaf

ker(ΩqZ(logD) dw∧−−−→ Ωq+1
Z (logD)).

It is known ([ESY17, Theorem 1.3.2]) that we have

fp,q(Y,w) = dim grpFY u
Hp+q

dR (Ω•
Y , d+ dw∧),

where F •
Y u is the Yu filtration on the twisted de Rham cohomologies as defined in [Yu14]. In particular,

as the Yu filtration is independent of the choice of a compactification Z, so are the numbers fp,q(Y,w).
The authors of [KKP17] predicted that when a Landau–Ginzburg model (Y,w) is the mirror of a

Fano variety X, the Hodge numbers of X are related to the Landau–Ginzburg Hodge numbers of (Y,w)
by the formula

fp,q(Y,w) = hp,n−q(X), (4.0.1)

where n = dimX.
This conjecture has been verified in a number of cases, including the case of convenient and non-

degenerate Laurent polynomials ([Sab18b, Thm. 3.6], where the variant [KKP17, Conjecture 3.6] is
shown).

We prove this conjecture when X = Ǧ/P̌ is a minuscule homogeneous space. The mirror Landau–
Ginzburg model is (Y = G

◦
/P,w), where G resp. P are Langlands dual to Ǧ resp. P̌ (subject to the

choice of a root datum), G
◦
/P ⊂ G/P is the open projected Richardson variety, and w is induced by some

decoration function, see [LT24, §1.4].

Theorem 4.1. For X = Ǧ/P̌ a minuscule homogeneous space with dim(X) = n, consider the Landau-
Ginzburg model (Y,w) from above. Then (4.0.1) holds, namely:

fp,q(Y,w) = hp,n−q(X) =
{

0, if q ̸= n− p,
h
p− n

2
irr , if q = n− p.

In particular, both numbers are determined by ρ = 2ρ/2 up to a shift.

Before giving the proof, we will explain how the Hodge numbers fp,q(Y,w) are related to our irregular
Hodge numbers hirr of Frenkel–Gross connections.

Lemma 4.2. The numbers fp,q(Y,w) are zero if q ̸= n − p and are equal to hp−n/2
irr when q = n − p,

which is determined by ρ up to a twist.

Proof. Following [LT24, §1.3], let X(G,P ) be the (parabolic) geometric crystal, f : X → A1 the decoration
function, and π : X(G,P ) → Gm the highest weight function. The fiber Xt = π−1(t) for t ∈ Gm(C) is called
the geometric crystal with highest weight t, and is identified with the open projected Richardson variety
G

◦
/P ⊂ G/P . Moreover, (G

◦
/P, f |X1) is the mirror Landau–Ginzburg model of Ǧ/P̌ as mentioned above.

The character D-module of the geometric crystal X(G,P ) is defined as

CrG,P := π+Ef . (4.0.2)

According to [LT24, Thm. 1.8] and Theorem 2.4, the character D-module CrG,P is a D-module concen-
trated in degree 0 and is smooth on Gm such that

CrG,P ≃ ∇Ǧ(VλP
), (4.0.3)
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where λP is the minuscule weight of the dual group Ǧ of G determined by the parabolic subgroup P , and
VλP

is the representation of the highest weight λP . In particular, the fiber of ∇Ǧ(VλP
) at 1 is the twisted

de Rham cohomology Hn(Ω•
Y ,d + dw) associated with the Landau–Ginzburg model (Y,w).

By Theorem 3.3, we can view the rescalable integrable mixed twistor D-module ∇H
Ǧ

(V ) in (3.2.1) as
an exponential mixed Hodge module. By (4.0.3), its de Rham fiber is identified with CrG,P . The fiber
(or the pullback) of ∇H

Ǧ
(V ) at the smooth point 1 is an exponential mixed Hodge module (or structure)

∇H
Ǧ

(V )1 of weight 0, whose de Rham fiber is (CrG,P )1 ≃ Hn(Ω•
Y ,d + dw)(n/2), see also [FSY22, Def.

A.18].
By [Moc21, Prop 11.22], the irregular Hodge filtration Firr of ∇H

Ǧ
(V ) induces that of ∇H

Ǧ
(V )1. Moreover,

the irregular Hodge filtration on the de Rham fiber of ∇H
Ǧ

(V )1 coincides with the Yu filtration on the
twisted de Rham cohomology [ESY17, Prop 1.7.4] with a shift by n/2. Therefore, we have

h
p− n

2
irr = dim grpFYu

Hn(Ω•
Y ,d + dw) = fp,n−p.

At last, since Hp+q(Ω•
Y ,d + dw) = 0 when p+ q ̸= n, we have fp,q = 0 when q ̸= n− p.

Proof of Theorem 4.1. It is well known ([Che94] or [CG10, Chap. 3]) that the cohomology of a homoge-
neous space Ǧ/P̌ is of Hodge–Tate type, i.e. hp,n−q(X) = 0 if q ̸= n−p and hp,p(X) = b2p(X). Hence, we
need to identify the Betti numbers of X with our hp− n

2
irr . Since the latter are given by ρ, it is sufficient to

show that H2p(X) can be identified with the eigenspace of 2ρ acting on V , which under our assumptions
is a minuscule representation of Ǧ. This is exactly what is stated in [LT24, Prop 4.12] (especially the last
sentence of its proof). At last, by Lemma 4.2, we also have the identity hp,n−q(X) = fp,q(Y,w).

5 Examples of some small representations
In this subsection, we give examples of representations V such that N(V ) have Jordan blocks of different
sizes. Following our strategy as explained in Section 3.4, this yields concrete results for the irregular
Hodge numbers of Frenkel-Gross connections in these cases.

5.1 An

We take V = Cn+1 as the standard representation of Ǧ = SLn+1. In this case the connection ∇Ǧ(V ) is
the connection corresponding to the Bessel differential equation given in Example 2.1, and we observe
that N(V ) is conjugate to a Jordan block of size n+ 1 with eigenvalues 0. So the local monodromy of
∇Ǧ(V ) at 0 consists of 1 single Jordan block, and the Hodge numbers are

hα =
{

1, α ∈ {−n+1
2 + i | 0 ≤ i ≤ n+ 1},

0, else,

for α ∈ 1
2Z. Our result does agree with the irregular Hodge numbers of the Kloosterman connection; see

for example, [CnDRS19, SY19, QX23].
For the standard representation, the corresponding flag variety is the Projective space Pn. By

Theorem 4.1, we deduce that well-known formula of the Hodge numbers of Pn

{hp,p | 0 ≤ p ≤ n} = {1, . . . , 1}.

5.2 Bn

Let V = C2n+1 be the standard representation of SO2n+1. By [FG09, §6.3 Equation (5)], N(V ) is
conjugated to a matrix with one Jordan block of size 2n+ 1. So the local monodromy of ∇Ǧ(V ) at 0
consists of a single Jordan block of sizes 2n+ 1 and the Hodge numbers are

hα =
{

1, |α| ≤ n− 1,
0, else,

for α ∈ Z.
This also agrees with known examples. From our result for ∇Ǧ(V ), we deduce the irregular Hodge

numbers of ∇SO2n+1(V ), which coincide with formulas given in [CnDS21, SY19, QX23] up to a shift.
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5.3 E6, F4

Let V be a minuscule representation of E6, and Ṽ the one of F4. Recall that we have shown that
∇E6(V ) = ∇F4(Ṽ ) ⊕ O in (2.2.5).

To analyze the Jordan blocks of N(V ), we turn to the graph [SW23, (2.25)]. Each vertex represents a
basis vector vi, v′

i, or v′′
i of V . An edge with number k between a vertex u := vi, v

′
i, or v′′

i with anther
vertex w := vi+1, v

′
i+1, or v′′

i+1 means that Xαk
u is a non-zero multiple of w. Using the representation

theory of sl2, we deduce that the Jordan blocks of N(V ) are of sizes 19, 7, and 1 respectively. So the
irregular Hodge numbers of ∇F4(Ṽ ) and ∇E6(V ) are

hα =


1, 4 < |α| ≤ 8,
2, |α| ≤ 4,
0, else

and hα =


1, 4 < |α| ≤ 8,
2, 0 < |α| ≤ 4,
3, α = 0,
0, else,

respectively, for α ∈ Z.
For the group E6, the flag variety corresponds to the minuscule representation V is the Cayley plane.

By Theorem 4.1, we deduce Hodge numbers of the Cayley plane are

{hp,p | 0 ≤ p ≤ 16} = {1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1}.

5.4 E7

Let V be a minuscule representation of E7. By the graph [SW23, (2.27)], we deduce similarly as above from
the representation theory of sl2 that the Jordan blocks of N(V ) are of sizes 28, 18, and 10, respectively.
So the irregular Hodge numbers of ∇E7(V ) are

hp =


1, 9 < |p| ≤ 14,
2, 5 < |p| ≤ 9,
3, |p| ≤ 5,
0, else,

for p ∈ 1
2 +Z.

For the group E7, the flag variety corresponds to the minuscule representation V is the Freudenthal
variety. By Theorem 4.1, we deduce that the Freudenthal variety has Hodge numbers

{hp,p | 0 ≤ p ≤ 27} = {1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1}.

5.5 E8

Let V be the adjoint representation V = e8 of E8 (of dimension 248). Notice that N ∈ e8 is principally
nilpotent, which can be enhanced into a principal sl2. By [Kon59, §6.5 & Cor. 8.7], we can decompose
V = e8 into

⊕
i Vki

, where dimVki
are (2ki + 1)-dimensional irreducible sl2-representations, and the

numbers n1 < · · · < n8 are the exponents of e8.
By [Bou02, Place VII], the exponents of e8 are N1 = 1, N2 = 7, N3 = 11, N4 = 13, N5 = 17, N6 =

19, N7 = 23, and N8 = 29 respectively. So the dimensions of irreducible representations (as well as the
Jordan blocks of N) are of sizes 2Ni + 1 for i = 1, . . . , 8 respectively. So the irregular Hodge numbers of
∇E8(V ) are

hp =


8, |p| ≤ 1
9 − i, Ni−1 < |p| ≤ Ni for 2 ≤ i ≤ 8
0, else

for p ∈ Z.
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6 The R-module associated to the Frenkel-Gross connection
We have established in the previous sections using some geometric arguments that the Frenkel-Gross-
connection ∇Ǧ can be upgraded to a tensor functor ∇H

Ǧ
: Rep(Ǧ) → MTMint

resc(Gm,t) (see the discussion
around Eq. (3.2.5)). Hence, for any V ∈ Rep(Ǧ), the object ∇H

Ǧ
(V ) can in particular be considered as

an integrable mixed twistor module on Gm,t. Therefore, letting R := Rint
Gm,t

be the sheaf of rings with
global sections equal to C[z, t±]⟨z2∂z, z∂t⟩, we have a R-triple (M,M′, C), where M,M′ are coherent
R-modules. Our conjecture concerns an explicit expression for M. It seems difficult to establish this
conjecture directly, however, if one could do so, the main result of this paper would follow almost
immediately.

For an almost simple group Ǧ, we associate a tensor functor

∇R
Ǧ

: Rep(Ǧ) → Mod(R)

as follows. For each finite-dimensional complex representation V of Ǧ, let E(V ) := OA1
z×Gm,t

⊗C V be the
trivial bundle on A1

z ×Gm,t, the associated connection on E(V ) is given by

∇R
Ǧ

(V ) = d +
(
N(V ) + tE(V )

)dt
tz

−
(
N(V ) + tE(V )

)
h(G)dz

z2 + ρ(V )dz
z
, (6.0.1)

where h(Ǧ) is the Coxeter number of Ǧ, N(V ) and E(V ) are the endomorphisms of V induced by the
action of N,E ∈ ǧ and ρ(V ) is the semisimple (i.e. diagonalizable) matrix induced by the action of
ρ = 1

2
∑
α∨∈(Φ∨)+ α∨, half sum of positive coroots of Ǧ.

Notice that we have

∇R
Ǧ

(V ) : E(V ) → E(V ) ⊗ 1
z

Ω1
A1

z×Gm,t
(log({0} × Gm,t)) .

Proposition 6.1. The pair (E(V ),∇R
Ǧ

(V )) is integrable, i.e. we have (∇R
Ǧ

(V ))2 = 0. In particular, the
localization (E(V )(∗({0} × Gm,t)),∇R

Ǧ
(V )) is a flat meromorphic connection, and yields a local system

on Gm,z ×Gm,t.

Proof. First, recall that a connection ∇ of the form ∇ = Adt + Bdz (for A,B ∈ Mat(dim(V ) ×
dim(V ),OGm,z×Gm,t

)) is integrable if and only if A and B satisfy ∂zA− ∂tB = [A,B]. The connection in
(6.0.1) is of this form with A = 1

tz (N + tE) and B = − h
z2 (N + tE) + 1

zρ. The left side of the condition is
easy enough to evaluate: ∂zA− ∂tB = 1

tz2

(
−N + t(h− 1)E

)
.

For the right side, we work inside the Lie algebra: [A,B] = 1
tz2

[
N + tE, ρ

]
. Recall that we have shown

in (3.4.2) that [N, ρ] = −N. On the other hand, it is well-known that ⟨θ, ρ⟩ = h − 1, so we find that
[E, ρ] = (h− 1)E.

Hence, we conclude that [A,B] = 1
tz2

(
−N + t(h− 1)E

)
= ∂zA− ∂tB, i.e. that ∇ is integrable.

We finish this paper by the following conjecture about an explicit expression of the irregular Hodge
module structure defined on the Frenkel-Gross connection.

Conjecture 6.2. For any V ∈ Rep(Ǧ), if (M,M′, C) is the R-triple of the rescalable integrable
mixed twistor module ∇H

Ǧ
(V ), then we have an isomorphism M ∼= ∇R

Ǧ
(V ) of integrable R-modules.

Consequently, the irregular Hodge filtration of ∇H
Ǧ

(V ) is determined by ρ in the sense of Definition 3.5. ♢

It is easy to verify this conjecture in the examples from Section 5.1. As mentioned above, when
assuming the conjecture, our main result Theorem 1.1 would be a rather direct consequence using a
similar strategy to [CnDS21, Prop. 4.6] or to [CnDRS19, Thm. 5.9] (compare the expression (6.0.1) to
the expression of the connection ∇ in [CnDS21, Lem. 4.3]), where an adapted basis for the irregular
Hodge filtration was constructed. It is, however, unclear how to show the above conjecture when the
irregular Hodge structure ∇H

Ǧ
(V ) is defined using the geometric construction from Section 2.3.
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Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010, Reprint of the 1997 edition.
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