
PARALLEL THREE-DIMENSIONAL NONEQUISPACED FAST
FOURIER TRANSFORMS AND THEIR APPLICATION TO

PARTICLE SIMULATION∗

MICHAEL PIPPIG†‡ AND DANIEL POTTS†§

Abstract. Starting from an approved serial algorithm, we develop a new parallel algorithm
for calculating nonequispaced fast Fourier transforms on massively parallel distributed memory ar-
chitectures. We demonstrate how to deal with the inherent load imbalance of the serial algorithm
due to the use of oversampled FFT. This algorithm has been implemented in a new open source
software library called PNFFT. Furthermore, we derive a new parallel distributed memory algorithm
for the fast computation of fully Coulomb interactions in a charged particle system with non-periodic
boundary conditions based on a particle-mesh approximation scheme. We show that an appropri-
ate adjustment of the underlying parallel nonequispaced fast Fourier transform circumvents severe
load imbalance due to particle scaling. To prove the high scalability of our algorithms we provide
performance results on a BlueGene/P system using up to 65 536 cores.

Key words. parallel nonequispaced fast Fourier transform, parallel fast summation, parallel
particle mesh methods, NFFT

AMS subject classifications. 65T50 65Y05

1. Introduction. A broad variety of mathematical algorithms and applications
depends on the calculation of the nonequispaced discrete Fourier transform (NDFT),
which is a generalization of the discrete Fourier transform to nonequispaced nodes.
Especially, its fast approximate realization called nonequispaced fast Fourier trans-
form (NFFT) [10, 5, 55, 59, 53, 22, 32] led to the development of a large number of
fast numerical algorithms, e.g., in computerized tomography [18, 11], particle simu-
lation [51, 25] and spectral methods on adaptive grids, just to name a few examples.
An extensive list of applications can be found e.g. in [22].

Roughly speaking, the NFFT consists of three steps. First, a deconvolution in
frequency domain. Second, a fast Fourier transform (FFT) and, finally, a discrete
convolution in spatial domain. The deconvolution and convolution is performed with
a window function that is well localized in frequency and spatial domain. Therefore,
these two convolution steps can be performed approximately in a fast way. Another
advantage of the good localization is, that parallel implementations of the convolution
steps only require next neighbor communication.

The FFT plays a central role in the modular structure of the NFFT algorithm and
is a perfect example for the important interplay between the development of fast al-
gorithms and sustainable software engineering in order to produce high performance
software. Without a doubt, the FFTW software library [20, 21] is an outstanding
implementation of the FFT and one of the most important software packages in
scientific computing. It offers support of shared memory parallelism and also dis-
tributed memory parallelism based on a one-dimensional decomposition of the input
array. However, it has been argued that the one-dimensional data decomposition
is not scalable enough for modern, massive parallel, distributed memory architec-
tures [8, 13, 16, 56, 3]. Whenever the dimensionality of the input array is at least
three, a more scalable two-dimensional domain decomposition can be applied. Several

∗This work was supported by the BMBF grant 01IH08001B.
†Chemnitz University of Technology, Department of Mathematics, 09107 Chemnitz, Germany
‡michael.pippig@mathematik.tu-chemnitz.de
§potts@mathematik.tu-chemnitz.de

1

2 MICHAEL PIPPIG AND DANIEL POTTS

publicly available, parallel FFT software libraries [49, 48, 42, 41, 37, 36, 46, 44] based
on this approach have been proposed during the last years.

Following the example of the FFTW software library, the NFFT algorithm has
been implemented in the publicly available NFFT software library [32, 31], which also
offers support of shared memory parallelism [58] and a parallel implementation for
graphic processing units [33]. However, to our knowledge there is no publicly available
implementation of the NFFT algorithm suitable for distributed memory parallelism.
The algorithms in this paper and their publicly available implementations are intended
to close this gap between NFFT and modern distributed memory architectures.

In this paper we propose a parallel algorithm for computing the NFFT on mas-
sively parallel distributed memory architectures. This algorithm strongly requires the
parallel pruned FFT [46] in order to overcome severe load balancing problems. Our
highly scalable implementation is based on the Message Passing Interface [40] and
utilizes the PFFT software library [44] for computing the pruned FFT in parallel.
Furthermore, we describe a massively parallel fast summation algorithm based on
the parallel NFFT. The fast summation algorithm [51, 52] deals with the computa-
tion of Coulomb interactions in charged particle systems with non-periodic boundary
conditions. This is similar to Ewald-like particle-mesh algorithms, which only work
for periodic boundary conditions, see e.g. [23, Ch. 7] for an overview. Indeed, in
[47] we point out that the building blocks of the fast summation for non-periodic
boundary conditions and the NFFT-based fast Ewald summation [25] for periodic
boundary conditions are very similar. Especially, both algorithms employ the NFFT
in order to achieve a fast algorithm. For periodic boundary conditions, there has
been a broad variety of publications about parallel particle-mesh algorithms, e.g. see
[57, 50, 39, 43, 38, 26, 54]. However, these implementations use simple cutoff schemes
in order to deal with Coulomb interactions for non-periodic boundary conditions and
thereby totally ignore the long range nature of these interactions.

To our knowledge, this is the first paper that presents results on distributed mem-
ory parallelization of particle-mesh algorithms with non-periodic boundary conditions,
i.e., we present an approximation scheme that allows the accurate computation of the
Coulomb interactions up to an prescribed error in parallel. A numerical comparison
with parallel implementation of other methods, e.g., an implementation of the Fast
Multipole Method [30], will be published elsewhere.

The outline of this paper is as follows: We start in Section 2 with the introduction
of the notation and definitions that we will use in the remainder of the paper. Next,
we give the definition of the NDFT and explain the basic principles of the NFFT
in Section 3. In Section 4 we present our parallel NFFT algorithm, which we apply
in Section 5 to develop a parallel algorithm for computing the Coulomb potentials
and fields of a charged particle system. Section 6 contains performance evaluations
of our publicly available, parallel implementation. Finally, we conclude the paper in
Section 7.

2. Notation, Definitions and Assumptions. In this section we introduce
the notation, basic definitions and assumptions that are used throughout the entire
paper. Assume the multi-bandwidth N = (N0, N1, N2)> ∈ 2N3. We define the multi-
index set of possible frequencies IN :=

{
−N0

2 , . . . ,
N0
2 − 1

}
×
{
−N1

2 , . . . ,
N1
2 − 1

}
×{

−N2
2 , . . . ,

N2
2 − 1

}
, the total number of frequencies |IN | = N0 ·N1 ·N2 and the three-

dimensional torus T3 := R3/Z3 ∼ [− 1
2 ,

1
2)3. For |IN | complex numbers f̂k, k ∈ IN ,

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 3

the trigonometric polynomial f : T3 → C is given by

f(x) =
∑

k∈IN

f̂ke−2πikx. (2.1)

Hereby, kx := k0x0 + k1x1 + k2x2 denotes the canonical scalar product. The fast
evaluation of f at arbitrarily chosen nodes xj ∈ T3, j = 1, . . . ,M , with M ∈ N, i.e.,

fj := f(xj) =
∑

k∈IN

f̂ke−2πikxj , j = 1, . . . ,M, (2.2)

is known as three-dimensional nonequispaced fast Fourier transform (NFFT). Equa-
tion (2.2) can be written as a matrix-vector product,

f = Af̂ ,

with the vectors f := (fj)j=1,...,M ∈ CM , f̂ := (f̂k)k∈IN
∈ C|IN |, and the non-

equispaced Fourier matrix A :=
(
e−2πikxj

)
j=1,...,M ; k∈IN

∈ CM×|IN |. For clarity of
presentation we write the multi-index k in order to address elements of vectors and
matrices at the linearized index k2 + N2k1 + N2N1k0. In general, the matrix A is
not square. Even for the square case, it is usually not orthogonal. Therefore, the
definition of an inverse NFFT is not canonical, but can be realized by an iterative
method, see e.g. [34]. Instead, it is customary to define the adjoint transform by the
matrix-vector product

ĥ = Aàf ,

that is equivalent to the sums

ĥk =
M∑
j=1

fje+2πikxj , k ∈ IN , (2.3)

with the vector ĥ := (ĥk)k∈IN
. In addition, we are interested in the fast calculation

of the gradients

∇fj := ∇f(xj) =
∑

k∈IN

f̂k∇e−2πikxj , j = 1, . . . ,M. (2.4)

Equation (2.4) can be written as a matrix-vector product,

∇f = ∇Af̂ ,

with the vectors ∇f := (∇fj)j=1,...,M ∈ C3M , f̂ := (f̂k)k∈IN
∈ C|IN |, and the matrix

∇A :=
(
∇e−2πikxj

)
j=1,...,M ; k∈IN

∈ C3M×|IN |, where each gradient stands for three
successive rows of the matrix.

The parallel NFFT (PNFFT) algorithms, implemented in our library [45], are
fast approximate algorithms for computing the sums in (2.2) and the adjoint trans-
form (2.3). These both transforms are also the cornerstone for the nonequispaced
convolution, see e.g. [35]. In addition, we implemented a fast approximate algorithm
for computing the gradients (2.4).

4 MICHAEL PIPPIG AND DANIEL POTTS

3. The Three-Dimensional NFFT Algorithm. This section summarizes the
mathematical theory and ideas behind the NFFT based on [53, 32]. For further NFFT
approaches see [32, Appendix C]. Assume n = (n0, n1, n2)> ∈ 2N3, with N ≤ n.
Hereby, the inequality holds component-wise. Again, we define the multi-index set
In :=

{
−n0

2 , . . . ,
n0
2 − 1

}
×
{
−n1

2 , . . . ,
n1
2 − 1

}
×
{
−n2

2 , . . . ,
n2
2 − 1

}
and the total

number of frequencies |In| = n0 ·n1 ·n2. Let ψ : T→ R be a smooth window function,
i.e., a function that is well localized in spatial domain and in frequency domain. We
denote its Fourier coefficients by ψ̂k, k ∈ Z. Furthermore, we define a multivariate
window function ϕ : T3 → R by the tensor product ϕ (x) := ψ (x0)ψ (x1)ψ (x2). A
simple consequence is that its Fourier coefficients

ϕ̂k :=
∫
T3
ϕ(x)e+2πikxdx

are given by ϕ̂k = ψ̂k0 ψ̂k1 ψ̂k2 , k = (k0, k1, k2)> ∈ Z3 with ψ̂k :=
∫
T ψ(x)e+2πikxdx

and the gradient ∇ϕ(x) can be easily computed by

∇ϕ(x) = (ψ′(x0)ψ(x1)ψ(x2), ψ(x0)ψ′(x1)ψ(x2), ψ(x0)ψ(x1)ψ′(x2))> . (3.1)

We follow the general approach of [55, 53] and approximate the complex expo-
nentials in the trigonometric polynomial (2.1) by

e−2πikx ≈ 1
|In|ϕ̂k

∑
l∈In,m(x)

ϕ
(
x− l� n−1) e−2πik(l�n−1) ,

where the multi-index set

In,m (x) := {l ∈ In : n� x−m1 ≤ l ≤ n� x +m1}

collects these indexes where the window function ϕ is mostly concentrated. Here,
m ∈ N is a small window cutoff parameter, which depends on the particular choice
of the window function. We use the vector 1 := (1, 1, 1)>, the component-wise vector
product n � x := (n0x0, n1x1, n2x2)>, the reciprocal of a vector n with nonzero
components n−1 :=

(
n−1

0 , n−1
1 , n−1

2
)> and the inequality between two vectors holds

component-wise.
After changing the order of summation in (2.1) we obtain for xj ∈ T3, j =

1, . . . ,M, the approximation

f (xj) ≈
∑

l∈In,m(xj)

(∑
k∈IN

f̂k

|In|ϕ̂k
e−2πik(l�n−1)

)
ϕ
(
xj − l� n−1) ,

which causes a truncation error and an aliasing error, see [53, 32] for details. As can
be readily seen, after an initial deconvolution step,

ĝk = f̂k

|In|ϕ̂k
, k ∈ IN , (3.2)

the expression in brackets can be computed via a three-dimensional oversampled FFT
of total size |In|,

gl =
∑

k∈IN

ĝke−2πik(l�n−1), l ∈ In . (3.3)

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 5

[−0.5,
0.5)[−0.5, 0.5)

s j

g l

n 1
n 0 0000

0000
0000

0000 n 1
n 0

f̂k

|In
|ϕ̂k

N 1N 0

f̂ k Over-
sampling

Deconvo-
lution

FFT

Convo-
lution

Figure 3.1. Two-dimensional illustration of the serial NFFT workflow for N = (8, 8)> given
Fourier coefficients, oversampled FFT size n = (16, 16)>, M = 150 nonequispaced nodes and window
cutoff parameter m = 1. At the beginning, the given Fourier coefficients f̂k are point wise multiplied
according to the deconvolution formula (3.2) and mapped into an oversampled FFT array of size n.
Afterwards, an FFT of size n is performed according to (3.3). The computation of the convolution
sums (3.4) is illustrated at the example of a single red circled node xj . Note, that a small number
of 2m + 1 (black circled) grid points is sufficient in order to compute the convolution sum (3.4)
corresponding to this node. The support of the truncated window function centered at node xj is
given by the red rectangle of size (2m)2.

The final step consists of the evaluation of sums having at most (2m+1)3 terms where
the window function ϕ is sampled only in the neighborhood of the node xj , i.e.,

f(xj) ≈ sj :=
∑

l∈In,m(xj)

gl ϕ
(
xj − l� n−1) , (3.4)

and

∇f(xj) ≈ ∇sj :=
∑

l∈In,m(xj)

gl∇ϕ
(
xj − l� n−1) .

In addition to the evaluation of the window function ϕ, it requires roughly |IN | +
|In| log |In| + (2m + 1)3M floating point operations. We present a two-dimensional
illustration of the serial NFFT algorithm for chosen parameters N = (8, 8)>, n =
(16, 16)>, M = 150 and m = 1 in Figure 3.1. In matrix-vector notation, the NFFT
Algorithm can be written as Af̂ ≈ BF Df̂ , where D is a real |IN | × |IN | diagonal
matrix defined by

D := diag (1/ϕ̂k)k∈IN
.

6 MICHAEL PIPPIG AND DANIEL POTTS

The matrix F := (e−2πik(l�n−1))l∈In,k∈IN
is a truncated Fourier matrix of size |In|×

|IN | and B denotes the sparse real M × |In| matrix

B := (bjl)j=1,...,M ; l∈In
, bjl :=

{
ϕ
(
xj − l� n−1) : l ∈ In,m(xj)

0 : l /∈ In,m(xj)
.

An approximation of the adjoint transform is given by Aàf ≈ DF àB>f . The
gradients (2.4) can be approximated by means of the analytic derivative of the window
function [14], i.e., ∇Af̂ ≈ ∇BF Df̂ with

∇B := (∇bjl)j=1,...,M ; l∈In
, ∇bjl :=

{
∇ϕ

(
xj − l� n−1) : l ∈ In,m(xj)

0 : l /∈ In,m(xj)
.

Note that the NFFT and gradient NFFT only differ in the multiplication with the last
matrix B and ∇B, respectively. Since the window function ϕ is defined as a tensor
product, the evaluation of function values for both matrices can be easily combined.
As we can see in (3.1) for a given node x = (x0, x1, x2)> ∈ T3 it is sufficient to
evaluate the one-dimensional window function ψ and its derivative ψ′ at the three
coordinates x0, x1, x2.

To keep the approximation error small, several functions ϕ with good localization
in spatial and frequency domain have been proposed. In our parallel NFFT implemen-
tation the user is free to choose between the (dilated) Gaussian [10, 55, 9], (dilated)
cardinal central B–splines [5, 55], and (dilated) Kaiser–Bessel functions [29, 19]. We
point out that the approximation error introduced by the NFFT decays exponentially
with the number of summands m. Error estimates for the multivariate case were
presented in [12], see also [32, Appendix C]. In the case of the Gaussian window func-
tion, the evaluations of the exponential function exp() can be reduced substantially
by fast Gaussian gridding, see [22] and [32, Appendix C]. However, all proposed win-
dow functions can be evaluated with the same efficiency, if interpolation from short
precomputed interpolation tables is used, see also Section 6.1 for more details.

4. The Parallel Three-Dimensional NFFT Algorithm. In this section we
describe a parallel algorithm for computing the three-dimensional NFFT on massively
parallel, distributed memory architectures. The implementation of this algorithm is
based on the Massage Passing Interface [40]. Our parallel NFFT (PNFFT) algorithm
combines the serial three-dimensional NFFT algorithm from Section 3 with a three-
dimensional block domain decomposition. In addition, we pay special attention to
the case where all the nonequispaced nodes xj are contained in a special subset of the
torus T3. For a given node scaling factor C = (C0, C1, C2)> ∈ (0, 1]3 we define the
truncated torus T3

C := [−C0
2 ,

C0
2)×[−C1

2 ,
C1
2)×[−C2

2 ,
C2
2). For the PNFFT we assume

xj ∈ T3
C for every j = 1, . . . ,M . Obviously, for C0 = C1 = C2 = 1 this corresponds

to the serial NFFT, where the nodes xj are contained in the whole three-dimensional
torus T3. This slight generalization is necessary in order to assure a load balanced
distribution of nodes xj whenever the nodes are concentrated in the center of the box
as we will see in the next section.

4.1. Description of the Algorithm. Assume P = (P0, P1, P2)> ∈ N3. We
identify every MPI process of a given parallel hardware architecture with a multi-
index of the three-dimensional process mesh PP := {0, . . . , P0 − 1}×{0, . . . , P1 − 1}×
{0, . . . , P2 − 1}. For every process r = (r0, r1, r2)> ∈ PP we define the multi-index

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 7

0000
0000

0000
0000 n 1

n 0

f̂k

|In
|ϕ̂k

N 1N 0

f̂ k Over-
sampling

Deconvo-
lution

N 1
N 0

f̂k

|In
|ϕ̂k

N 1
N 0

f̂ k
Deconvo-
lution

Figure 4.1. Two-dimensional illustration of the serial deconvolution workflow according to
(3.2) on the left and the parallel deconvolution workflow according to (4.1) on the right. We chose
N = (8, 8)> given Fourier coefficients, oversampled FFT size n = (16, 16)> and a process mesh of
size P = (4, 2)>. The serial algorithm uses explicit mapping of the incoming Fourier coefficients f̂k

into an oversampled FFT array of size n filled with zeros. In contrast, our parallel data distribution
avoids the distribution of zeros and therefore does not depend on the oversampled FFT size n.

set

I r
N ,P =

{
(k0, k1, k2)> ∈ IN : −Nt2 + rt

Nt
Pt
≤ kt < −

Nt
2 + (rt + 1)Nt

Pt
, t = 0, 1, 2

}
.

At the beginning of our parallel algorithm, we assume the NFFT input array of |IN |
complex numbers to be distributed among the three-dimensional process mesh PP

such that every process r ∈ PP holds the input data f̂k, k ∈ Ir
N ,P in its locally

available memory. For the sake of simplicity, we assume that the input array sizes
N0, N1, N2 are divisible by the process mesh sizes P0, P1, P2. Therefore, the input
array is distributed in equal blocks of sizeN0/P0·N1/P1·N2/P2. This restriction serves
to keep the notation simple. Nevertheless, our implementation supports arbitrary
input array sizes N ∈ N3 and process mesh sizes P ∈ N3 regardless of their divisibility.

The serial NFFT algorithm starts with the deconvolution step (3.2) that consists
of an ordinary point wise multiplication. It can be calculated straight forward in
parallel, i.e., every process r ∈ PP computes

ĝk = f̂k

|In|ϕ̂k
, k ∈ Ir

N ,P . (4.1)

Figure 4.1 shows a two-dimensional illustration of the serial deconvolution workflow
according to (3.2) and the parallel deconvolution workflow according to (4.1) for
parameters N = (8, 8)>, n = (16, 16) and a process mesh of size P = (4, 2)>.

In the second step (3.3) we compute a three-dimensional oversampled FFT. Be-
fore we look at the parallel counter part of this step, we need the following slight
generalization. Similar to the truncated input data set of an oversampled FFT, we
want to allow a truncated output data set. Therefore, we introduce the pruned FFT
output size L ∈ 2N3 with L ≤ n. Hereby, the inequality holds component-wise. The
pruned FFT is given by

gl =
∑

k∈IN

ĝke−2πik(l�n−1), l ∈ IL ,

8 MICHAEL PIPPIG AND DANIEL POTTS

[−0.5,
0.5)[−0.5, 0.5)

s j

g l

n 1
n 0

Convo-
lution

[−0.5,
0.5)[−0.5, 0.5)

s j
[−C02

,C
02
)[− C12 , C12)

g l

n 1
n 0

L 1L 0

Convo-
lution

Figure 4.2. Two-dimensional illustration of the serial convolution workflow according to (3.4)
for node scaling factor C = (1, 1)> and M = 150 nonequispaced nodes on the left and node scaling
factor C =

(3
8 , 3

8
)> and M = 50 nonequispaced nodes on the right. Furthermore, we chose an

oversampled FFT size n = (16, 16)>, pruned FFT output size L = (8, 8)> and window cutoff
parameter m = 1. In both cases the computation of the convolution sums (3.4) is illustrated at the
example of a single red circled node xj . The support of the truncated window function centered at
node xj is given by the red rectangle of size (2m)2. Again, a small number of 2m + 1 (black circled)
grid points is sufficient in order to compute the convolution sum (3.4) corresponding to this node.
However, on the left for every data gl there exists at least one node xj that depends on gl for the
computation of the corresponding convolution sum sj . In contrast, on the right the nodes have been
scaled to the center of the unit box. Therefore, no data gl outside the gray colored border is ever
needed for the computation of any convolution sum sj . The gray border of width m results from the
overlapping support of the window function.

with IL := {−L0
2 , . . . ,

L0
2 − 1} × {−L1

2 , . . . ,
L1
2 − 1} × {−L2

2 , . . . ,
L2
2 − 1}. Obviously,

for L = n the pruned FFT coincides with the second step of the serial NFFT al-
gorithm given by equation (3.3). The significance of the pruned FFT output size L
becomes clear, if we have a look at the third step of the NFFT algorithm shown in
equation (3.4). There the summation runs over the multi-index sets In,m (xj) ⊂ In,
j = 1, . . . ,M . We want to take advantage of the fact that all the nodes xj are con-
tained in the truncated torus T3

C . In order to avoid the computation of unneeded coef-
ficients gl we are looking for the smallest multi-index set IL that holds In,m (xj) ⊂ IL

for every j = 1, . . . ,M . The component-wise smallest L = (L0, L1, L2)> ∈ 2N3 that
fulfills these conditions is given by

Lt := min
{
nt, 2

(⌈
Ct
nt
2

⌉
+m

)}
, t = 0, 1, 2 .

Figure 4.2 shows a two-dimensional illustration of the additional condition xj ∈
T3

C and its implications on the serial computation of the convolution sums (3.4) for
parameters n = (16, 16)>, L = (8, 8)>, C =

(3
8 ,

3
8
)> and m = 1.

In parallel we substitute the three-dimensional pruned FFT by a parallel one, i.e.,

gl =
∑

s∈PP

∑
k∈Is

N,P

ĝk e−2πik(l�n−1), l ∈ Ir
L,P . (4.2)

The formal order of summation in this notation was chosen to symbolize the parallel
data decomposition of a block distributed parallel three-dimensional FFT algorithm.
In general, a parallel FFT algorithm may use a different order of summation or an

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 9

g l

n 1
n 0

L 1L 0
0000

0000
0000

0000 n 1
n 0

f̂k

|In
|ϕ̂k

FFT

≈ L1 + 2m

≈ L
0+ 2m

gr l

L 1
L 0

g l

N 1
N 0

f̂k

|In
|ϕ̂k

pruned
PFFT

Ghost
cells

Figure 4.3. Two-dimensional illustration of the serial FFT workflow according to (3.3) on
the left and the parallel pruned FFT workflow according to (4.2) on the right. We chose N = (8, 8)>
given Fourier coefficients, oversampled FFT size n = (16, 16)>, pruned FFT output size L = (8, 8)>,
window cutoff parameter m = 1 and a process mesh of size P = (4, 2)>. A naive block decomposition
of the FFT on the left would lead to several processes that own input blocks full of zeros before
the FFT and output blocks full with unnecessary data gl outside the gray colored border after the
FFT. Instead, our algorithm uses a parallel pruned FFT that works with a block distribution of the
necessary input and output data. Note, that the parallel NFFT needs to communicate a border of m
(green colored) ghost cells according to (4.3) in order to prepare the parallel convolution according
to (4.4).

approximate algorithm to calculate the Fourier transform. The inner sum reflects that
every process s ∈ PP starts with calculations on its locally available input data block
of size N0/P0 ·N1/P1 ·N2/P2. The outer sum stands for the global communication that
must be performed somehow within the parallel FFT algorithm. After the parallel
FFT the output data gl, l ∈ IL, is distributed on the process mesh in a similar way as
the input data set, i.e., every process owns a block of L0/P0 · L1/P1 · L2/P2 complex
numbers. Once more, we assume that L0, L1, L2 are divisible by the process mesh
sizes P0, P1, P2 in order to keep the notation simple. Again, for every process r ∈ PP

the multi-index set

I r
L,P :=

{
(k0, k1, k2)> ∈ In : −Lt2 + rt

Lt
Pt
≤ kt < −

Lt
2 + (rt + 1)Lt

Pt
, t = 0, 1, 2

}
collects all the multi-indexes of locally available data. We apply the PFFT software
library [44] for computing the parallel pruned FFT. This library was developed for
calculating parallel FFT on massively parallel architectures. It uses a transpose FFT
algorithm that consist of successive one-dimensional FFT and global data transposi-
tions, see [46] for details. We stress that PFFT is the only publicly available parallel
FFT software library that pays special attention to the efficient parallel computa-
tion of pruned FFT. This feature is crucial in order to assure a good load balancing
of our parallel NFFT algorithm. It is noteworthy to say that PFFT is based on a
two-dimensional domain decomposition, i.e., the three-dimensional decomposed FFT
input ĝk, k ∈ Ir

N ,P , and output gl, l ∈ Ir
L,P is redistributed before and after ev-

10 MICHAEL PIPPIG AND DANIEL POTTS

[−0.5,
0.5)[−0.5, 0.5)

s j
[−C02

,C
02
)[− C12 , C12)

g l

n 1
n 0

L 1L 0

Convo-
lution

[−C02
,C

02
)[− C12 , C12)

s j

≈ L1 + 2m

≈ L
0+ 2m

gr l

Convo-
lution

Figure 4.4. Two-dimensional illustration of the serial convolution workflow according to (3.4)
on the left and the parallel convolution workflow according to (4.4) on the right. We chose an
oversampled FFT size n = (16, 16)>, pruned FFT output size L = (8, 8)>, node scaling factor
C =

(3
8 , 3

8
)>, M = 50 nonequispaced nodes, window cutoff parameter m = 1 and a process mesh

of size P = (4, 2)>. In both cases the computation of the convolution sums (3.4) is illustrated at
the example of a single red circled node xj . The support of the truncated window function centered
at node xj is given by the red rectangle of size (2m)2. Again, a small number of 2m + 1 (black
circled) grid points is sufficient in order to compute the convolution sum (3.4) corresponding to this
node. In the parallel case, the nonequispaced nodes have been block distributed according to the block
distribution of the FFT outputs gl. Every process is able to compute the convolution sums sj for all
locally available nodes xj from the locally available data gr

l .

ery parallel FFT. Therefore, an upper limit for the number of processes is given
by the two-dimensional decomposition of the parallel FFT. Figure 4.3 shows a two-
dimensional illustration of the serial FFT workflow according to (3.3) and the parallel
pruned FFT workflow according to (4.2) for parameters N = (8, 8)>, n = (16, 16)>
and a process mesh of size P = (4, 2)>. Note, that the parallel ghost cell duplication
step (4.3) within this illustration will be explained in the next paragraphs.

The block data distribution of the FFT output gl, l ∈ IL, naturally induces a
block decomposition of the truncated Torus T3

C . This motivates the definition of the
index sets

Mr
P :=

{
j = 1, . . . ,M : ∃l ∈ Ir

L,P with l ≤ n� xj < l + 1
}
,

for every process r ∈ PP . We assign all nodes xj , j ∈Mr
P , to a single process r ∈ PP .

As one can already see, heterogeneous distributions of the nodes xj , j = 1, . . . ,M ,
can lead to imbalances in memory consumption and workload between the processes,
which is a typical problem of mesh based domain decompositions.

According to the discrete convolution step of the serial NFFT algorithm, we
compute the sums (3.4), which run over the local multi-index sets In,m (xj), j ∈Mr

P .
Our choice of parameter L assures In,m (xj) ⊂ IL for every j ∈Mr

P , i.e., the output
of the pruned FFT is sufficient. But in general, not all sufficient data gl, l ∈ In,m (xj),
is located on a single process r. Therefore, we perform a communication step in order
to gather all the additionally needed data. However, this step equals to a mesh ghost
cell communication [24, Ch. 5.6.1] and only involves nearest neighbor communication.

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 11

With the definition of the multi-index sets

I r
L,P ,m :=

{
(l0, l1, l2) ∈ In :

− Lt
2 + rt

Lt
Pt
−m ≤ lt < −

Lt
2 + (rt + 1)Lt

Pt
+m, t = 0, 1, 2

}
,

for all processes r ∈ PP , we symbolize the ghost cell communication by

gr
l = gl, l ∈ Ir

L,P ,m . (4.3)

Note that every process must gather the data gl, l ∈ Ir
L,P ,m \ Ir

L,P , from its nearest
neighbors by explicit communication. We use the ghost cell support of the PFFT
software library for implementing the ghost cell communication. Figure 4.3 also in-
cludes a two-dimensional illustration of the parallel ghost cell communication accord-
ing to (4.3) with parameters L = (8, 8)>, C =

(3
8 ,

3
8
)>, m = 1 and a process mesh of

size P = (4, 2)>.
Finally, the sums

sj =
∑

l∈In,m(xj)

gr
l ϕ(xj − l� n−1), j ∈Mr

P , (4.4)

are calculated locally on all processes r ∈ PP . Figure 4.4 shows a two-dimensional
illustration of the serial convolution workflow according to (3.4) and the parallel con-
volution workflow according to (4.4) for parameters n = (16, 16)>, L = (8, 8)>,
C =

(3
8 ,

3
8
)>, M = 50, m = 1 and a process mesh of size P = (4, 2)>. Alg. 1 sum-

marizes the PNFFT algorithm in pseudo-code and Figure 4.5 gives a summarizing
two-dimensional illustration of the serial and parallel NFFT workflow for parameters
N = (8, 8)>, n = (16, 16)>, L = (8, 8)>, C =

(3
8 ,

3
8
)>, M = 50, m = 1 and a process

mesh of size P = (4, 2)>.

Input: xj ∈ T3
C , j ∈Mr

P , and f̂k ∈ C, k ∈ Ir
N ,P .

1: For k ∈ Ir
N ,P compute ĝk := |In|−1 · f̂k/ϕ̂k.

2: For l ∈ Ir
L,P compute gl :=

∑
s∈PP

∑
k∈Is

N,P

ĝk e−2πik(l�n−1) by a parallel,

three-dimensional, pruned FFT.
3: For l ∈ Ir

L,P ,m gather gr
l := gl by a ghost cell communication.

4: For j ∈Mr
P compute sj :=

∑
l∈In,m(xj)

gr
l ϕ(xj − l� n−1).

5: For j ∈Mr
P compute ∇sj :=

∑
l∈In,m(xj)

gr
l ∇ϕ(xj − l� n−1).

Output: Approximate function values sj ≈ fj and gradients ∇sj ≈ ∇fj , j ∈Mr
P .

Alg. 1: Parallel, three-dimensional, nonequispaced fast Fourier transform (PNFFT)
for each process r ∈ PP .

12 MICHAEL PIPPIG AND DANIEL POTTS

[−0.5,
0.5)[−0.5, 0.5)

s j
[−C02

,C
02
)[− C12 , C12)

g l

n 1
n 0

L 1L 0
0000

0000
0000

0000 n 1
n 0

f̂k

|In
|ϕ̂k

N 1N 0

f̂ k Over-
sampling

Deconvo-
lution

FFT

Convo-
lution

[−C02
,C

02
)[− C12 , C12)

s j

≈ L1 + 2m

≈ L
0+ 2m

gr l

L 1
L 0

g l

N 1
N 0

f̂k

|In
|ϕ̂k

N 1
N 0

f̂ k
Deconvo-
lution

pruned
PFFT

Ghost
cells

Convo-
lution

Figure 4.5. Two-dimensional illustration of the serial NFFT workflow on the left and the
parallel NFFT workflow of Alg. 1 on the right. We chose N = (8, 8)> given Fourier coefficients,
oversampled FFT size n = (16, 16)>, pruned FFT output size L = (8, 8)>, node scaling factor
C =

(3
8 , 3

8
)>, M = 50 nonequispaced nodes, window cutoff parameter m = 1 and a process mesh

of size P = (4, 2)>. For detailed explanations of the separate steps see Figure 4.1, Figure 4.3 and
Figure 4.4.

The adjoint PNFFT algorithm can be derived analogously from the serial adjoint
NFFT algorithm [32]. Note that the adjoint counterpart of the ghost cell communi-
cation (4.3) is a sum over all ghost cells, i.e.,

gl =
∑

s∈PP

gs
l , l ∈ Ir

L,P .

The pseudo-code of the adjoint PNFFT is given by Alg. 2.

5. Application of the Parallel NFFT. In this section we demonstrate the
application of our PNFFT algorithm in order to calculate the Coulomb potentials
and forces of a charged particle system on massively parallel distributed memory
architectures. We start with the outline of the serial fast summation algorithm [51, 52]
and continue with its parallel counterpart.

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 13

Input: xj ∈ T3
C , and fj ∈ C, j ∈Mr

P .

1: For l ∈ Ir
L,P ,m compute gr

l :=
∑

{j∈Mr
P :

l∈In,m(xj)}

fj ϕ(xj − l� n−1).

2: For l ∈ Ir
L,P accumulate gl :=

∑
s∈PP

gs
l by an adjoint ghost cell communication.

3: For k ∈ Ir
N ,P compute ĝk :=

∑
s∈PP

∑
l∈Is

L,P

gl e+2πik(l�n−1) by an adjoint, parallel,

three-dimensional, pruned FFT.
4: For k ∈ Ir

N ,P compute ŝk := |In|−1 · ĝk/ϕ̂k.

Output: Approximate coefficients ŝk ≈ ĥk, k ∈ Ir
N ,P .

Alg. 2: Adjoint, parallel, three-dimensional, nonequispaced fast Fourier transform
(adjoint PNFFT) for each process r ∈ PP .

5.1. Serial Fast Summation Algorithm. Assume M charged particles with
charge qj ∈ R at position xj ∈ T3, j = 1 . . . ,M . We are interested in the fast
evaluation of the potentials

φj := φ(xj) =
M∑
l=1
l 6=j

ql
1

‖xj − xl‖2
, j = 1, . . . ,M, (5.1)

and fields

Ej := −∇φ(xj) =
M∑
l=1
l 6=j

ql
xj − xl
‖xj − xl‖3

2
, j = 1, . . . ,M . (5.2)

Hereby, ‖x‖2 := (x2
0 + x2

1 + x2
2)1/2 denotes the Euclidean norm. Without loss of

generality we may assume that the nodes are scaled, such that ‖xj‖2 <
1
4 −

εB
2 with

a small constant εB > 0 and consequently ‖xj − xl‖2 <
1
2 − εB.

We now outline the NFFT based fast summation algorithm for the fast compu-
tation of (5.1) and (5.2). It requires O(M logM) arithmetic operations for uniformly
distributed source nodes xj . This approach was suggested in [51, 52]. There, a regu-
larization

R(r) :=


TI(r) if r ≤ εI,

TB(r) if 1
2 − εB < r < 1

2 ,

TB(1
2) if 1

2 ≤ r,
1
r otherwise,

with a near field cutoff radius εI > 0 and a far field regularization border εB > 0
has been introduced. The functions TI and TB are chosen such that R(‖x‖2) is in
the Sobolev space Hp(T3) for an appropriate degree of smoothness p ∈ N. Several
regularizations of 1

r are possible, e.g., by algebraic polynomials, splines, trigonometric

14 MICHAEL PIPPIG AND DANIEL POTTS

polynomials or two point Taylor interpolation, see [17]. The potentials φj in equa-
tion (5.1) can be approximated by

φj ≈ hj := φNE
j + φRF

j ,

where

φNE
j := R(0) +

∑
l∈INE

εI
(j)

ql

(
1

‖xj − xl‖2
−R(‖xj − xl‖2)

)
, (5.3)

φRF
j :=

∑
k∈IN

R̂k

(
M∑
l=1

qle+2πikxl

)
e−2πikxj . (5.4)

Hereby, the index set INE
εI

(j) := {l ∈ {1, . . . ,M} \ {j} : ‖xj − xl‖2 < εI} collects all
the indexes of xj next neighbors and the Fourier coefficients of the regularized kernel
function

R̂k := 1
|IN |

∑
l∈IN

R(‖l�N−1‖2)e+2πi(l�N−1)k, k ∈ IN ,

are precomputed by a three-dimensional adjoint discrete Fourier transform. Since the
gradient of the regularization is given by ∇R(‖x‖2) = R′(‖x‖2) x

‖x‖2
, we are able to

approximate the fields Ej in equation (5.2) analogously to the potentials by

Ej ≈ −∇hj := ENE
j + ERF

j ,

where

ENE
j := −∇φNE

j =
∑

l∈INE
εI

(j)

ql
xj − xl
‖xj − xl‖2

(
1

‖xj − xl‖2
2

+R′(‖xj − xl‖2)
)
, (5.5)

ERF
j := −∇φRF

j = −
∑

k∈IN

R̂k

(
M∑
l=1

qle+2πikxl

)
∇e−2πikxj . (5.6)

If the nodes xj are “sufficiently uniformly distributed” this can indeed be done in a
fast way, namely:

Near field computation (5.3), (5.5). To achieve the desired complexity of our
algorithm we suppose that there exists a small constant ν ∈ N such that the near field
index sets INE

εI
(j) contain at most ν indexes for every node xj , j = 1, . . . ,M . This

implies that εI depends linearly on 1/ 3
√
M . Then, for fixed xj the sum (5.3) contains

not more than ν terms so that its evaluation at all M nodes xj requires only O(νM)
arithmetic operations.

Far field computation (5.4), (5.6) by NFFT. The expression in the inner
brackets of (5.4) can be computed by an adjoint, parallel, three-dimensional NFFT
with total number of frequencies |IN |. This is followed by |IN | multiplications with
the Fourier coefficients R̂k of the regularized kernel function and completed by a
parallel, three-dimensional NFFT with total number of frequencies |IN | to compute
the outer most sum. If m is the window cutoff parameter and n the FFT size of
the (adjoint) NFFT, then the proposed evaluation of φRF

j and ERF
j at the nodes xj ,

j = 1, . . . ,M requires O(m3M + |In| log |In|)) arithmetic operations. The relation
between M,N and n is determined by the approximation error of the algorithm and
is discussed in detail in [51, 52, 17].

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 15

5.2. Parallel Fast Summation Algorithm. After we have seen the highly
modularized structure of the serial fast summation algorithm it is easy to derive a
parallel fast summation algorithm by substituting every module with its parallel coun-
terpart. Our parallel algorithm starts with a parallel forward sorting step that assures
the following two conditions. First, we need to distribute the nodes xj according to
our block decomposition such that every process r ∈ PP holds the nodes xj , j ∈Mr

P .
Furthermore, every process r ∈ PP needs local copies of all the nodes that are in-
volved in the calculation of the near field sums (5.3) and (5.5), i.e., all the nodes xj ,
j ∈

⋃
l∈Mr

P
INE
εI

(l). We perform these two tasks at once using a fine-grained data
distribution operation [28] that is implemented within a software library for parallel
sorting algorithms [6].

We assume that all nodes xj are located in a cubic box. Note that the serial
fast summation algorithm requires the condition ‖xj‖2 < 1

4 −
εB

2 for every node
xj , j = 1, . . . ,M . A cubic box can have at most box length 1√

3 (1
2 − εB) in order

to fit into a ball with radius 1
4 −

εB

2 . Therefore, we set the node scaling factor
C = 1√

3 (1
4 −

εB

2 ,
1
4 −

εB

2 ,
1
4 −

εB

2)> and our adjoint PNFFT starts with a three-
dimensional decomposition of the truncated torus T3

C . We stress that the usage of
the truncated torus T3

C is crucial in order to avoid severe load balancing problems in
this case. If we use a block decomposition of the whole torus T3 instead, at most an
eighth of the processes will receive a non empty block.

After the parallel forward sort every process r ∈ PP owns all the local particles
xj , j ∈Mr

P , and the associated particles in the near field radii of these particles, i.e.,
xj , j ∈

⋃
l∈Mr

P
INE
εI

(l). Now, the local near field computations (5.3) and (5.5) are
performed with a standard linked cell algorithm, see e.g. [27, Ch. 8.4] or [23, Ch. 3],
and the far field computations (5.4) and (5.6) are split into the following three steps.

At first, we compute

âk :=
∑

s∈PP

∑
j∈Ms

P

qje+2πikxj , k ∈ Ir
N ,P ,

by an adjoint PNFFT (Alg. 2). Again, the formal order of summation was chosen in
order to reflect the parallel data decomposition. The convolution in frequency domain
is a simple point wise multiplication and is performed locally on each process r ∈ PP ,
i.e.,

d̂k := âkR̂k , k ∈ Ir
N ,P .

Hereby, the Fourier coefficients R̂k of the regularization R are precomputed by a
parallel three-dimensional FFT

R̂k = 1
|IN |

∑
s∈PP

∑
l∈Is

N,P

R(‖l�N−1‖2)e+2πi(l�N−1)k, k ∈ Ir
N ,P . (5.7)

Afterward, the far field potentials and fields are computed by a PNFFT (Alg. 1)

φRF
j :=

∑
s∈PP

∑
k∈Is

N,P

d̂ke−2πikxj , j ∈Mr
P

ERF
j := −

∑
s∈PP

∑
k∈Is

N,P

d̂k∇e−2πikxj , j ∈Mr
P .

16 MICHAEL PIPPIG AND DANIEL POTTS

Finally, we use the fine-grained data distribution operation from the parallel sorting
library to restore the initial parallel distribution of the nodes xj together with the
computed Coulomb potentials and fields.

In summary we obtain Alg. 3 for the fast and parallel evaluation of the potentials
(5.1) and the fields (5.2). Note that this algorithm can be easily modified for other
kernel functions frequently used in the approximation by radial basis functions, e.g.,
the Gaussian [35] or the (inverse) multiquadric [17] (x2 + c2)±1/2.

From an abstract point of view the steps of this algorithm are very similar
to particle-particle–particle-mesh (P3M) algorithms [27, Ch. 8], see also [7] for an
overview of particle-mesh algorithms. However, Alg. 3 differs from Ewald-based
particle-mesh methods in several details. At first, the Fourier coefficients of the reg-
ularized Coulomb potential must be computed by an FFT within a precomputation
step. In contrast, for periodic boundary conditions the Fourier coefficients are given
analytically by the well known Ewald splitting [15]. Furthermore, the fast summation
algorithm for nonperiodic boundary conditions makes use of oversampled FFTs and
rescaling of the particle coordinates into a box of roughly half the size of the initial
box. We have seen that these two steps imply load balancing problems for the par-
allelization of the fast summation algorithm that are not apparent in Ewald-based
particle-mesh algorithms. Therefore, Alg. 3 applies parallel pruned FFTs in order to
reduce the load imbalances. Furthermore, we show in Appendix A that the use of
oversampled FFTs does not increase the runtime in comparison to P3M algorithms
with the same mesh size, since we do not need all the FFT outputs. Even more, for
the parameter settings of our following numerical tests the overall runtime of the over-
sampled FFT with pruned output (4.2) is less than the runtime of a non-pruned FFT
of size N . In the following runtime measurement, we will also see that the FFTs take
only between 18% and 25% of the total runtime of Alg. 3. Therefore, the influence of
the FFT runtime on the total runtime of Alg. 3 is rather small.

Following the naming scheme of the P3M, our proposed Alg. 3 is called particle-
particle–NFFT (P2NFFT), since the short range particle-particle interactions are
computed in the same way as in P3M algorithms, while the long range particle-mesh
part is computed by nonequispaced fast Fourier transforms.

6. Numerical Results. We implemented Alg. 1 (PNFFT), Alg. 2 (adjoint
PNFFT) and Alg. 3 (P2NFFT) and investigated the strong scaling behavior of our im-
plementations on a BlueGene/P architecture. The PNFFT algorithms have been pub-
lished in the PNFFT software library [45] and the implementation of P2NFFT is part
of the publicly available ScaFaCoS software library [2]. In this section we first present
the parallel runtime measurements of the parallel NFFT and its adjoint. Secondly, we
show the strong scaling of the P2NFFT. We performed the tests on a BlueGene/P ar-
chitecture in Research Center Jülich (JuGene) [1]. One node of a BlueGene/P consists
of 4 IBM PowerPC 450 cores that run at 850 MHz. These 4 cores share 2 GB of main
memory. Therefore, we have 0.5 GB RAM per core, whenever all the cores per node
are used. The nodes are connected by a 3D torus network with 425 MB/s bandwidth
per link. In total JuGene consists of 73 728 nodes, i.e., 294 912 cores. Our software has
been built with the IBM XL C/C++ compiler (Advanced Edition for Blue Gene/P,
V9.0) and the compiler flags CFLAGS="-O3 -qmaxmem=-1 -qarch=450 -qtune=450".
As a test system we use a cubic box filled with 12 960 particles of a silica melt. It
was generated by a simulation of a melting silica crystal using the potential given
in [4]. This particle system consists of positive and negative charged ions which are
sufficiently homogeneously distributed. We duplicate the initial test system of 12 960

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 17

Input: N ∈ 2N3 multi-bandwidth,
εI > 0 near field cutoff radius,
εB > 0 far field regularization border,
nodes xj ∈

{
x ∈ T3 : ‖x‖2 ≤ 1

4 −
εB
2
}
, j ∈Mr

P ,
sources qj ∈ R, j ∈Mr

P

Precomputation: Compute the Fourier coefficients R̂k, k ∈ Ir
N ,P , given by Equa-

tion (5.7) by a parallel, three-dimensional, adjoint FFT.

1: Assign the local nodes xj , j ∈Mr
P ∪

⋃
l∈Mr

P
INE
εI

(l), by a parallel forward sort.

2: For k ∈ Ir
N ,P compute âk :=

∑
s∈PP

∑
j∈Ms

P

qje+2πikxj by an adjoint PNFFT, see

Alg. 2.
3: For k ∈ Ir

N ,P compute the products d̂k := âkR̂k.
4: For j ∈Mr

P compute the far field sums

φRF
j :=

∑
s∈PP

∑
k∈Is

N,P

d̂ke−2πikxj ,

ERF
j := −

∑
s∈PP

∑
k∈Is

N,P

d̂k∇e−2πikxj

by a PNFFT, see Alg. 1.
5: For j ∈Mr

P compute the near field sums

φNE
j = R(0) +

∑
l∈INE

εI
(j)

ql

(
1

‖xj − xl‖2
−R(‖xj − xl‖2)

)
,

ENE
j =

∑
l∈INE

εI
(j)

ql
xj − xl
‖xj − xl‖2

(
1

‖xj − xl‖2
2

+R′(‖xj − xl‖2)
)
.

by a linked cell algorithm, see [27, Ch. 8.4] or [23, Ch. 3].
6: For j ∈Mr

P compute the near field corrections of the potentials hj = φNE
j + φRF

j

and the fields −∇hj = ENE
j + ERF

j .
7: Restore the initial data distribution by a parallel backward sort.

Output: Approximate potentials hj ≈ φj and fields −∇hj ≈ Ej , j ∈Mr
P .

Alg. 3: Parallel, three-dimensional particle-particle–NFFT (P2NFFT) for each pro-
cess r ∈ PP .

particles for 4, 9 and 20 times in every direction of space in order to generate a cubic
box filled with 829 440, 9 447 840 and 103 680 000 particles, respectively. The sum
of all charges is equal to zero since the initial sample of 12 960 particles is neutrally
charged.

18 MICHAEL PIPPIG AND DANIEL POTTS

6.1. Some Notes on Performance Optimization. Before we present our
numerical results, we introduce some performance optimizations that we employed in
order to improve the run times of Alg. 1, Alg. 2 and Alg. 3. The proposed algorithms
have been implemented on top of the well optimized FFTW software library [21, 20]
and its extension to massively parallel architectures called PFFT [44, 46]. Similar
to FFTW, our implementation splits the workflow of the algorithm into two stages:
Firstly, a possibly time consuming planning part and, secondly, the fast and optimized
computation of the given problem. This concept makes it possible to implement
rather flexible algorithms that offer high and portable performance. Beside the use of
FFTW, which offers a kind of automatic hardware adaptivity, no effort was spent into
compiler or hardware specific optimizations. However, we were able to benefit from the
experiences that we gained during the development and implementation of the mature
NFFT software library for computing nonequispaced fast Fourier transforms [31, 32]
that also comes with the serial predecessor of the presented P2NFFT Alg. 3.

Precomputation of the window function. In order to reduce the computa-
tional cost of the evaluation of the window function in Alg. 1 and Alg. 2, we use tensor
structure based precomputation and interpolation from lookup tables [32]. There-
fore, we reduce the computation of the (2m + 1)3 window function values per node
in (4.4) to 3(2m + 1) interpolations of the one-dimensional window function ψ and
(2m+ 1)3 multiplications in order to compute the tensor products ϕ(x− l�n−1) =
ψ(x0 − l0

n0
)ψ(x1 − l1

n1
)ψ(x2 − l2

n2
). Note, that the computing time of the window

function with tensor product based interpolation does not depend on the particu-
lar choice of the window function. In our implementation the flags PRE_LIN_PSI,
PRE_QUAD_PSI and PRE_KUB_PSI enable linear, quadratic and cubic interpolation of
the one-dimensional window function ψ(x). Additionally, the flag PRE_PHI_HAT en-
ables the precomputation of the Fourier coefficients ϕ̂k, k ∈ Ir

N ,P . Hereby, we do not
store the full set of |IN | Fourier coefficients. Instead, we exploit the tensor structure
of the three-dimensional window function ϕ̂k = ψ̂k0 ψ̂k1 ψ̂k2 , k = (k0, k1, k2)> ∈ IN

and store the precomputed N0 +N1 +N2 Fourier coefficients of the one-dimensional
window functions ψ̂kt , kt = −Nt/2, . . . , Nt/2 − 1, t = 0, 1, 2. Therefore, the evalua-
tion of the three-dimensional Fourier coefficients requires 2|IN | multiplications. For
our numerical experiments we chose the Kaiser-Bessel window function with cubic
interpolation from precomputed lookup tables.

Transposed FFT Output. The PFFT software library employs a parallel FFT
algorithm that contains several data transpositions in order to enable the computa-
tion of one-dimensional local FFTs [46]. On default these transpositions are reverted
after the computation of the FFT, which doubles the amount of global communi-
cation. However, a convolution in Fourier space corresponds to a simple point-wise
multiplication of two arrays. As long as both arrays are distributed in the same way, a
point-wise multiplication can be easily implemented for any parallel data decomposi-
tion. Therefore, we omit the additional communication and use the transpositions of
the second FFT to restore the initial data decomposition in the following way. First,
we compute the parallel adjoint FFT Step 3 of the adjoint PNFFT Alg. 2 with trans-
posed output. Afterward, the convolutions in Fourier space of the adjoint PNFFT
(Step 4 of Alg. 2), the P2NFFT (Step 3 of Alg. 3) and the PNFFT (Step 1 of Alg. 1)
are computed on transposed arrays. Finally, we compute the parallel FFT Step 2 of
Alg. 1 with transposed input and end up with the initial domain decomposition.

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 19

Interpolation of the Regularization. The computation of the near field Step 5
of the P2NFFT Alg. 3 requires the repetitive evaluation of the regularization R(r)
and its derivative R′(r) for 0 ≤ r ≤ εI . Since these two functions are smooth, we use
cubic interpolation from precomputed lookup tables to speed up their evaluation.

6.2. Runtimes of PNFFT and adjoint PNFFT. In Figure 6.1 we show
the wall clock time measurements of Alg. 1 (PNFFT) and Alg. 2 (adj. PNFFT)
for 5123 Fourier coefficients and 829 440 nonequispaced nodes up to 16 384 cores of a
BlueGene/P architecture. For comparison purposes we show the perfect strong scaling
times (perfect) of the first recorded time. In addition, we add the wall clock time of
the most time consuming parts of these algorithms. These are the convolution Steps 4
and 5 (B, ∇B), the ghost cell communication Step 3 (ghost), the FFT Step 2 (F)
and the deconvolution Step 1 (D) of Alg. 1 and their adjoint counterparts of Alg. 2,
i.e., the adjoint convolution Step 1 (adj. B), the adjoint ghost cell communication
Step 2 (adj. ghost), the adjoint FFT Step 3 (adj. F) and the adjoint deconvolution
Step 4 (adj. D). Both plots are scaled equally such that a direct comparison of the
time measurement between the two algorithms is possible.

25 27 29 211 213

10−3

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

PNFFT perfect B, ∇B

ghost F D

25 27 29 211 213

10−3

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

adj. PNFFT perfect adj. B

adj. ghost adj. F adj. D

Figure 6.1. Wall clock time measurements of Alg. 1 (PNFFT) on the left and Alg. 2 (adjoint
PNFFT) on the right with number of nonequispaced nodes M = 829 440, pruned FFT input size
N = (512, 512, 512)>, oversampled FFT size n = (576, 576, 576)>, pruned FFT output size L =
(174, 174, 174)> and window cutoff parameter m = 4.

The deconvolution Step 1 of Alg. 1 (D) and the adjoint counterpart Step 4 of
Alg. 2 (adj. D) scale perfectly and only represent a small amount of the overall run
times. The fast Fourier transform Step 2 of Alg. 1 (F) and its adjoint Step 3 of Alg. 2
(adj. F) show good strong scaling up to 4096 cores, which corresponds to one rack of
the BlueGene/P. We observe a performance penalty for computing the parallel FFT
on more than one rack. However, note that the pruned FFT output is only of size
1743. The FFT-internal two-dimensional distribution of 1743 complex numbers on
1282 processes results in very small workload per process.

The discrete convolution step of Alg. 1 (B,∇B) includes the calculation of the
function values (Step 4 of Alg. 1) and the calculation of the gradients (Step 5 of
Alg. 1). Therefore, it is more time consuming than the corresponding adjoint Step 1
of Alg. 2 (adj. B). Both show good strong scaling behavior. Note that every process
gets only 51 nodes xj in average, if we use 16 384 processes in total.

20 MICHAEL PIPPIG AND DANIEL POTTS

Instead, the ghost cell communication shows bad strong scaling for more than 512
processes. The adjoint ghost cell communication is more expensive than plain ghost
cell communication since it additionally involves the computation and synchronization
of the partial sums of ghost cell summands. For 16 384 processes the adjoint ghost cell
communication turns out to be the most time consuming part of the adjoint PNFFT.
We observe that the ghost cell communication is the most limiting factor for strong
scaling. This slightly improves for larger test cases, where the ratio between the ghost
cell communication and the overall computing time decreases.

In Figure 6.2 we show the wall clock time measurements of Alg. 1 (PNFFT) and
Alg. 2 (adj. PNFFT) for a medium sized test case with 10243 Fourier coefficients and
9 447 840 nonequispaced nodes. Furthermore, we present in Figure 6.3 the wall clock
time measurements of Alg. 1 (PNFFT) and Alg. 2 (adj. PNFFT) for a large test case
with 20483 Fourier coefficients and 103 680 000 nonequispaced nodes. Both test cases
have been run on up to 65 536 cores of a BlueGene/P architecture.

211 212 213 214 215 216

10−3

10−2

10−1

100

number of cores

w
al
lc

lo
ck

tim
e
in

s

PNFFT perfect B, ∇B

ghost F D

211 212 213 214 215 216

10−3

10−2

10−1

100

number of cores

w
al
lc

lo
ck

tim
e
in

s

adj. PNFFT perfect adj. B

adj. ghost adj. F adj. D

Figure 6.2. Wall clock time measurements of Alg. 1 (PNFFT) on the left and Alg. 2 (adjoint
PNFFT) on the right with number of nonequispaced nodes M = 9 447 840, pruned FFT input size
N = (1024, 1024, 1024)>, oversampled FFT size n = (1152, 1152, 1152)>, pruned FFT output size
L = (340, 340, 340)> and window cutoff parameter m = 4.

There the computing time of the discrete convolution step, the adjoint FFT and
the adjoint ghost cell communication are nearly the same. Also the strong scaling
behavior of all three steps is good. Although the ghost cell communication does not
provide good scaling behavior, it only takes 4% of the overall PNFFT run time with
65 536 processes. Once more, the deconvolution steps show perfect strong scaling.
The parallel pruned FFT shows a performance penalty at 8192 and 16 384 processes.
Presumably this comes from the fact, that the underlying two-dimensional process
grid exceeds the physical dimensions of one rack along the first dimension for 8192
processes and along the first and second dimension for more than 8192 processes. We
observe a good scaling of the overall wall clock time of the PNFFT and the adjoint
PNFFT that reflects the good scaling of all their most time consuming steps.

Note, that the pruned FFT output sizes used in these examples are not divisible by
the number of processes. Therefore, the block decomposition of the parallel FFT does
not result in equal blocks and gives rise to load imbalances. These load imbalances
become especially obvious for small FFT output sizes L and large process counts.

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 21

211 212 213 214 215 216

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

PNFFT perfect B, ∇B

ghost F D

211 212 213 214 215 216

10−2

10−1

100

101

number of cores
w
al
lc

lo
ck

tim
e
in

s

adj. PNFFT perfect adj. B

adj. ghost adj. F adj. D

Figure 6.3. Wall clock time measurements of Alg. 1 (PNFFT) on the left and Alg. 2 (adjoint
PNFFT) on the right with number of nonequispaced nodes M = 103 680 000, pruned FFT input size
N = (2048, 2048, 2048)>, oversampled FFT size n = (2304, 2304, 2304)>, pruned FFT output size
L = (674, 674, 674)> and window cutoff parameter m = 4.

Therefore, the parallel FFTs of the medium sized 9 447 840 particle test case presented
in Figure 6.2 show underwhelming strong scaling behavior, whereas the parallel FFTs
corresponding to the 103 680 000 particle test case presented in Figure 6.3 show a
nearly perfect scaling behavior.

6.3. Runtimes of P2NFFT. Let φP2NFFT(xj), j = 1, . . . ,M denote the po-
tentials that are calculated by Alg. 3 and φREF(xj), j = 1, . . . ,M the potentials that
are calculated by any high accuracy reference method. For small numbers of particles
we chose the direct summation as reference method, while a fast method with higher
accuracy was used to calculate the reference potentials for large systems. The relative
RMS potential error is given by

εpot :=

 M∑
j=1
|φREF(xj)− φP2NFFT(xj)|2

1/2 M∑
j=1
|φREF(xj)|2

−1/2

.

For the following run time measurements we tuned the parameters of P2NFFT in
order to hold εpot < 10−5.

In Figure 6.4 we show the wall clock time measurements of Alg. 3 (P2NFFT) for
the silica melt test case with 829 440 particles on a BlueGene/P architecture using
up to 16 384 cores. For comparison purposes we show the perfect strong scaling time
(perfect) of the first recorded time. In addition, we add the wall clock time of the
most time consuming parts of this algorithm. These are the forward sorting Step 1
(Forw Sort), the far field computation Steps 2, 3 and 4 (Far Field), the near field
computation Step 5 (Near Field) and the backward sorting Step 7 (Back Sort) of
the P2NFFT Alg. 3. Note, that the individual wall clock time measurements of the
adjoint PNFFT Step 2 (adj. PNFFT) and the PNFFT Step 4 (PNFFT) are given
in Figure 6.1. We stress that the pruned FFT output size L = (174, 174, 174)> is
significantly smaller than the oversampled FFT size n = (576, 576, 576)> for this test
case, i.e., only 2.8% of the oversampled FFT output are necessary to compute the
convolution Steps of the PNFFT and its adjoint. This problem arises from the fact

22 MICHAEL PIPPIG AND DANIEL POTTS

25 27 29 211 213

10−2

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

P2NFFT perfect Sort Forw
Far Field Near Field Sort Back

Figure 6.4. Alg. 3 (P2NFFT) for a silica melt with number of nonequispaced nodes M =
829 440, RMS-potential error εpot = 10−5, regularization parameters εI = εB = 0.0078, pruned
FFT input size N = (512, 512, 512)>, oversampled FFT size n = (576, 576, 576)>, pruned FFT
output size L = (174, 174, 174)> and window cutoff parameter m = 4.

that we must scale all the nonequispaced nodes in order to fulfill ‖xj‖2 < 1
4 −

εB

2
for all j = 1, . . . ,M . However, our algorithm takes care of this fact since we apply
a parallel pruned FFT and use the data decomposition of the truncated Torus T3

C

instead of the full Torus T3, see also Figure 4.2 for details.
Although the near field and far field computations show good strong scaling, we

observe that the sorting steps are the most limiting factor for strong scaling of the
P2NFFT algorithm. Remember, that the parallel sorting assures the block domain
decomposition and generates the ghost cell particles that are necessary for the near
field computations. Since the parallel sorting algorithm calls MPI_Alltoallv we see
the typical almost linear increase of sorting time from 2048 to 16 384 processes. How-
ever, we stress that using 16 384 cores for this test case implies a very small number
of 51 local nodes for every process. Therefore, generating the ghost particles that are
necessary for the near field computation is rather costly in comparison to the actual
near field computations itself.

Note, that typical MD software packages already have a high performance im-
plementation of the near field part and use a block wise domain decomposition that
perfectly fits the three-dimensional data decomposition of our P2NFFT Alg. 3. In this
case we could redirect the near field computation Steps 5 and 6 of our P2NFFT Alg. 3
to the MD software package and omit the whole sorting Steps 1 and 7 of Alg. 3. Then
we are left with the stand alone far field part without sorting, e.g. Steps 2, 3 and
4 of Alg. 3. The corresponding run time behavior of the far field part is dominated
by the parallel nonequispaced Fourier transforms, which were analyzed in detail in
Figure 6.1, Figure 6.2 and Figure 6.3.

In Figure 6.5 we show the wall clock time measurements of Alg. 3 (P2NFFT) for
the silica melt test case with 9 447 840 particles on a BlueGene/P architecture using up
to 65 536 cores. Finally, in Figure 6.6 we see the wall clock time measurements of Alg. 3
(P2NFFT) for the silica melt test case with 103 680 000 particles on a BlueGene/P
architecture using up to 65 536 cores. A comparison of Figure 6.5 and Figure 6.6 yields
a better scaling of the larger test case since the quota of sorting decreases. In both

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 23

211 212 213 214 215 216

10−2

10−1

100

number of cores

w
al
lc

lo
ck

tim
e
in

s

P2NFFT perfect Sort Forw
Far Field Near Field Sort Back

Figure 6.5. Alg. 3 (P2NFFT) for a silica melt with number of nonequispaced nodes M =
9 447 840, RMS-potential error εpot = 10−5, regularization parameters εI = εB = 0.0039, pruned
FFT input size N = (1024, 1024, 1024)>, oversampled FFT size n = (1152, 1152, 1152)>, pruned
FFT output size L = (340, 340, 340)> and window cutoff parameter m = 4.

211 212 213 214 215 216

10−1

100

101

number of cores

w
al
lc

lo
ck

tim
e
in

s

P2NFFT perfect Sort Forw
Far Field Near Field Sort Back

Figure 6.6. Alg. 3 (P2NFFT) for a silica melt with number of nonequispaced nodes M =
103 680 000, RMS-potential error εpot = 10−5, regularization parameters εI = εB = 0.002, pruned
FFT input size N = (2048, 2048, 2048)>, oversampled FFT size n = (2304, 2304, 2304)>, pruned
FFT output size L = (674, 674, 674)> and window cutoff parameter m = 4.

test cases the wall clock time of the sorting steps increases almost linearly with the
number of processes and prevents a good scaling of the over all run time. However,
we stress again that the number of local particles is rather small in comparison to the
number of used processes in these test cases and a typical MD software may omit the
sorting by using an appropriate domain decomposition.

7. Conclusions. In this paper we have presented new parallel algorithms for
computing the nonequispaced fast Fourier transform and its adjoint on distributed
memory architectures. These algorithms have been implemented and published in
the PNFFT [45] software library. To our knowledge this is the first publicly available

24 MICHAEL PIPPIG AND DANIEL POTTS

massively parallel NFFT implementation. Run time tests on a BlueGene/P system
using up to 65 536 cores showed a good scalability of our implementation. Further-
more, we applied the parallel nonequispaced Fourier transform in order to derive a
parallel fast summation algorithm (P2NFFT). This is the first time a particle-mesh
algorithm was applied in order to compute long ranged interactions with non-periodic
boundary conditions in parallel. We implemented the P2NFFT algorithm within the
ScaFaCoS [2] software library and presented scaling results on a BlueGene/P system
using up to 65 536 cores. The run time behavior was dominated by the good scaling of
the PNFFT-driven far field computations, the near field computations and the paral-
lel particle sorting that we introduced in order to get a flexible algorithm independent
of the incoming domain decomposition. However, the sorting can be circumvented by
using a common block wise domain decomposition.

Appendix A. Complexity Estimation of Pruned FFT. For sake of simplic-
ity we assume a cubic Fourier mesh, i.e., N := N0 = N1 = N2, n := n0 = n1 = n2,
L := L0 = L1 = L2. In this section, we compare the complexity of an ordinary
three-dimensional FFT of total size N3 and the pruned three-dimensional FFT (3.3)
of total size n3 with pruned FFT input size N3 and pruned FFT output size L3. Let
σ := n/N and τ := L/N . The three-dimensional pruned FFT (3.3) is computed via
a typical row-column algorithm, i.e., three successive sets of one-dimensional FFTs.
Before each one-dimensional FFT, the one-dimensional input arrays of length N are
padded with zeros up to length n. Afterward, only L outputs of each one-dimensional
FFT are kept for the next calculations. In the following, we count the number of
arithmetic operations but ignore the time needed for any data movement.

The first step consists of N2 FFTs of size n at the total cost of

c0 = CFFT ·N2n logn = CFFT · σN3 (logN + log σ)

arithmetic operations. Hereby, CFFT is a constant that accounts for the arithmetic
operations for each calculation of a butterfly step. During the second step NL FFTs
of size n are computed at the total cost of

c1 = CFFT ·NLn logn = CFFT · στN3 (logN + log σ)

arithmetic operations. Finally, L2 FFTs of size n are computed at the total cost of

c2 = CFFT · L2n logn = CFFT · στ2N3 (logN + log σ)

arithmetic operations. In summary, the complexity of the three-dimensional pruned
FFT is given by

cσ,τ := c0 + c1 + c2 = CFFT · σ
(
1 + τ + τ2)N3 (logN + log σ)

Note, that the well known complexity of a non-pruned three-dimensional FFT of size
N3 is given by

c1,1 = CFFT · 3N3 logN.

and the complexity of a three-dimensional oversampled FFT with oversampling factor
σ is given by

cσ,σ = CFFT · σ(1 + σ + σ2)N3(logN + log σ).

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 25

Therefore, we get an estimation of the increase of runtime due to the pruned FFT

cσ,τ
c1,1

= σ(1 + τ + τ2)
3

(
1 + log σ

logN

)
≈ σ(1 + τ + τ2)

3 .

For a rather conservative oversampling factor of σ = 2 and non-pruned output (τ = 2)
the increase of runtime during the FFT would be about c2,2/c1,1 ≈ 4, 67. However,
if we set σ = 1.125 and τ = 0.34 according to the runtime measurements given in
Figure 6.4 we get c1.125,0.34/c1,1 ≈ 0.546, i.e., computing only 1743 outputs of an
oversampled three-dimensional FFT of size 5763 is even faster than computing all
outputs of an ordinary three-dimensional FFT of size 5123.

Acknowledgments. We thank the anonymous reviewers for their helpful sug-
gestions. This work was partly supported by the German Ministery of Science and
Education (BMBF) under grant 01IH08001B. We are grateful to the Jülich Super-
computing Center for providing the computational resources on Jülich BlueGene/P
(JuGene). We wish to thank Dr. Franz Gähler, who supplied the silica melt test
case. Furthermore, we gratefully acknowledge the help of Dr. Michael Hofmann on
the parallel sorting algorithms and the help of Rene Halver on the implementation of
the parallel linked cell algorithm.

REFERENCES

[1] JuGene: Jülich Blue Gene/P. http://www.fz-juelich.de/ias/jsc/EN/Expertise/
Supercomputers/JUGENE/JUGENE_node.html.

[2] ScaFaCoS - Scalable Fast Coloumb Solvers. http://scafacos.github.io.
[3] O. Ayala and L.P. Wang: Parallel implementation and scalability analysis of 3D Fast Fourier

Transform using 2D domain decomposition. Parallel Comput., 39:58 – 77, 2013.
[4] B.W.H. van Beest and G.J. Kramer: Force fields for silicas and aluminophosphates based on

ab initio calculations. Phys. Rev. Lett., 64(16):1955–1958, 1990.
[5] G. Beylkin: On the fast Fourier transform of functions with singularities. Appl. Comput.

Harmon. Anal., 2:363 – 381, 1995.
[6] H. Dachsel, M. Hofmann, and G. Rünger: Library Support for Parallel Sorting in Scientific

Computations. In Proc. of the 13th International Euro-Par Conference, vol. 4641 of LNCS,
pp. 695–704. Springer, 2007.

[7] M. Deserno and C. Holm: How to mesh up Ewald sums. I. A theoretical and numerical com-
parison of various particle mesh routines. J. Chem. Phys., 109:7678 – 7693, 1998.

[8] H.Q. Ding, R.D. Ferraro, and D.B. Gennery: A portable 3d FFT package for distributed-memory
parallel architectures. In Proceedings of the 7th SIAM Conference on Parallel Processing,
pp. 70 – 71, Philadelphia, 1995. SIAM.

[9] A.J.W. Duijndam and M.A. Schonewille: Nonuniform fast Fourier transform. Geophysics,
64:539 – 551, 1999.

[10] A. Dutt and V. Rokhlin: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat.
Comput., 14:1368 – 1393, 1993.

[11] H. Eggers, T. Knopp, and D. Potts: Field inhomogeneity correction based on gridding recon-
struction. IEEE Trans. Med. Imag., 26:374 – 384, 2007.

[12] B. Elbel and G. Steidl: Fast Fourier transform for nonequispaced data. In C.K. Chui and
L.L. Schumaker (eds.): Approximation Theory IX, pp. 39 – 46, Nashville, 1998. Vanderbilt
University Press.

[13] M. Eleftheriou, J.E. Moreira, B.G. Fitch, and R.S. Germain: A volumetric FFT for Blue-
Gene/L. In T.M. Pinkston and V.K. Prasanna (eds.): HiPC, vol. 2913 of Lecture Notes
in Computer Science, pp. 194 – 203, Berlin, 2003. Springer.

[14] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen: A smooth
particle mesh Ewald method. J. Chem. Phys., 103:8577 – 8593, 1995.

[15] P.P. Ewald: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys.,
369:253–287, 1921.

[16] B. Fang, Y. Deng, and G. Martyna: Performance of the 3D FFT on the 6D network torus
QCDOC parallel supercomputer. Comp. Phys. Comm., 176:531 – 538, 2007.

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/JUGENE_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/JUGENE_node.html
http://scafacos.github.io

26 MICHAEL PIPPIG AND DANIEL POTTS

[17] M. Fenn and G. Steidl: Fast NFFT based summation of radial functions. Sampl. Theory Signal
Image Process., 3:1 – 28, 2004.

[18] J.A. Fessler and B.P. Sutton: Nonuniform fast Fourier transforms using min-max interpolation.
IEEE Trans. Signal Process., 51:560 – 574, 2003.

[19] K. Fourmont: Non equispaced fast Fourier transforms with applications to tomography. J.
Fourier Anal. Appl., 9:431 – 450, 2003.

[20] M. Frigo and S.G. Johnson: The design and implementation of FFTW3. Proc. IEEE, 93:216 –
231, 2005.

[21] M. Frigo and S.G. Johnson: FFTW, C subroutine library, 2009. http://www.fftw.org.
[22] L. Greengard and J.Y. Lee: Accelerating the nonuniform fast Fourier transform. SIAM Rev.,

46:443 – 454, 2004.
[23] M. Griebel, S. Knapek, and G. Zumbusch: Numerical simulation in molecular dynamics, vol. 5

of Texts in Computational Science and Engineering. Springer, Berlin, 2007.
[24] W. Gropp, E. Lusk, and R. Thakur: Using MPI-2: Advanced Features of the Message-Passing

Interface. MIT Press, Cambridge, MA, USA, 1999.
[25] F. Hedman and A. Laaksonen: Ewald summation based on nonuniform fast Fourier transform.

Chem. Phys. Lett., 425:142 – 147, 2006.
[26] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl: GROMACS 4 : Algorithms for Highly

Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput.,
4:435 – 447, 2008.

[27] R.W. Hockney and J.W. Eastwood: Computer simulation using particles. Taylor & Francis,
Inc., Bristol, PA, USA, 1988.

[28] M. Hofmann and G. Rünger: Fine-grained Data Distribution Operations for Particle Codes.
In M. Ropo, J. Westerholm, and J. Dongarra (eds.): Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 16th European PVM/MPI Users Group Meeting,
vol. 5759 of LNCS, pp. 54–63. Springer, 2009.

[29] J.I. Jackson, C.H. Meyer, D.G. Nishimura, and A. Macovski: Selection of a convolution function
for Fourier inversion using gridding. IEEE Trans. Med. Imag., 10:473 – 478, 1991.

[30] I. Kabadshow and H. Dachsel: The Error-Controlled Fast Multipole Method for Open and
Periodic Boundary Conditions. In G. Sutmann, P. Gibbon, and T. Lippert (eds.): Fast
Methods for Long-Range Interactions in Complex Systems, IAS-Series, pp. 85 – 113, Jülich,
2011. Forschungszentrum Jülich.

[31] J. Keiner, S. Kunis, and D. Potts: NFFT 3.0, C subroutine library. http://www.tu-chemnitz.
de/~potts/nfft.

[32] J. Keiner, S. Kunis, and D. Potts: Using NFFT3 - a software library for various nonequispaced
fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30, 2009.

[33] S. Kunis and S. Kunis: The nonequispaced FFT on graphics processing units. PAMM, Proc.
Appl. Math. Mech., 12, 2012.

[34] S. Kunis and D. Potts: Stability results for scattered data interpolation by trigonometric poly-
nomials. SIAM J. Sci. Comput., 29:1403 – 1419, 2007.

[35] S. Kunis, D. Potts, and G. Steidl: Fast Gauss transform with complex parameters using NFFTs.
J. Numer. Math., 14:295 – 303, 2006.

[36] N. Li: 2DECOMP&FFT, Parallel FFT subroutine library. http://www.2decomp.org.
[37] N. Li and S. Laizet: 2DECOMP & FFT - A Highly Scalable 2D Decomposition Library and

FFT Interface. In Cray User Group 2010 conference, pp. 1 – 13, Edinburgh, Scotland,
2010.

[38] H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, and G. Berne: ESPResSo — an extensible
simulation package for research on soft matter systems. Comp. Phys. Comm., 174:704 –
727, 2006.

[39] T. MacFarland, H. Couchman, F. Pearce, and J. Pichlmeier: A new parallel code for very
large-scale cosmological simulations. New Astron. Rev., 3:687 – 705, 1998.

[40] MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2, 2009. http://www.
mpi-forum.org.

[41] D. Pekurovsky: P3DFFT, Parallel FFT subroutine library. http://code.google.com/p/
p3dfft.

[42] D. Pekurovsky: P3DFFT: A Framework for Parallel Computations of Fourier Transforms in
Three Dimensions. SIAM J. Sci. Comput., 34:C192 – C209, 2012.

[43] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel,
L. Kalé, and K. Schulten: Scalable molecular dynamics with NAMD. J. Comput. Chem.,
26:1781 – 802, 2005.

[44] M. Pippig: PFFT, Parallel FFT subroutine library, 2011. http://www.tu-chemnitz.de/~mpip/
software.php.

http://www.fftw.org
http://www.tu-chemnitz.de/~potts/nfft
http://www.tu-chemnitz.de/~potts/nfft
http://www.2decomp.org
http://www.mpi-forum.org
http://www.mpi-forum.org
http://code.google.com/p/p3dfft
http://code.google.com/p/p3dfft
http://www.tu-chemnitz.de/~mpip/software.php
http://www.tu-chemnitz.de/~mpip/software.php

PNFFT - PARALLEL NONEQUISPACED FAST FOURIER TRANSFORMS 27

[45] M. Pippig: PNFFT, Parallel Nonequispaced FFT subroutine library, 2011. http://www.
tu-chemnitz.de/~mpip/software.php.

[46] M. Pippig: PFFT - An extension of FFTW to massively parallel architectures. SIAM J. Sci.
Comput., 35:C213 – C236, 2013.

[47] M. Pippig and D. Potts: Particle simulation based on nonequispaced fast Fourier transforms. In
G. Sutmann, P. Gibbon, and T. Lippert (eds.): Fast Methods for Long-Range Interactions
in Complex Systems, IAS-Series, pp. 131 – 158, Jülich, 2011. Forschungszentrum Jülich.

[48] S.J. Plimpton: Parallel FFT subroutine library. http://www.sandia.gov/~sjplimp/docs/fft/
README.html.

[49] S.J. Plimpton, R. Pollock, and M. Stevens: Particle-Mesh Ewald and rRESPA for Parallel
Molecular Dynamics Simulations. In Proceedings of the 8th SIAM Conference on Parallel
Processing for Scientific Computing (Minneapolis, 1997), Philadelphia, 1997. SIAM.

[50] E. Pollock and J. Glosli: Comments on P3M, FMM, and the Ewald method for large periodic
Coulombic systems. Comput. Phys. Comm., 95:93 – 110, 1996.

[51] D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci.
Comput., 24:2013 – 2037, 2003.

[52] D. Potts, G. Steidl, and A. Nieslony: Fast convolution with radial kernels at nonequispaced
knots. Numer. Math., 98:329 – 351, 2004.

[53] D. Potts, G. Steidl, and M. Tasche: Fast Fourier transforms for nonequispaced data: A tutorial.
In J.J. Benedetto and P.J.S.G. Ferreira (eds.): Modern Sampling Theory: Mathematics and
Applications, pp. 247 – 270, Boston, MA, USA, 2001. Birkhäuser.

[54] D.F. Richards, M.P. Surh, J.A. Gunnels, J.N. Glosli, B. Chan, M.R. Dorr, E.W. Draeger, J.L.
Fattebert, W.D. Krauss, T. Spelce, and F.H. Streitz: Beyond homogeneous decomposition:
Scaling Long-Range Forces on Massively Parallel Systems. In Proceedings of the Confer-
ence on High Performance Computing Networking, Storage and Analysis - SC ’09, pp. 1
– 12, New York, New York, USA, 2009. ACM Press.

[55] G. Steidl: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math.,
9:337 – 353, 1998.

[56] D. Takahashi: An Implementation of Parallel 3-D FFT with 2-D Decomposition on a Massively
Parallel Cluster of Multi-core Processors. In R. Wyrzykowski, J. Dongarra, K. Karczewski,
and J. Wasniewski (eds.): Parallel Processing and Applied Mathematics, vol. 6067 of Lec-
ture Notes in Computer Science, pp. 606 – 614. Springer, 2010.

[57] T. Theuns: Parallel P3M with exact calculation of short range forces. Comput. Phys. Comm.,
78:238 – 246, 1994.

[58] T. Volkmer: OpenMP parallelization in the NFFT software library. Preprint TU Chemnitz,
Preprint 7, 2012. http://www.tu-chemnitz.de/~potts/paper/openmpNFFT.pdf.

[59] A.F. Ware: Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev., 40:838
– 856, 1998.

http://www.tu-chemnitz.de/~mpip/software.php
http://www.tu-chemnitz.de/~mpip/software.php
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.tu-chemnitz.de/~potts/paper/openmpNFFT.pdf

