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PFFT: AN EXTENSION OF FFTW
TO MASSIVELY PARALLEL ARCHITECTURES*

MICHAEL PIPPIGT

Abstract. We present an MPI based software library for computing fast Fourier transforms
(FFTs) on massively parallel, distributed memory architectures based on the Message Passing Inter-
face standard (MPI). Similar to established transpose FFT algorithms, we propose a parallel FFT
framework that is based on a combination of local FFTs, local data permutations, and global data
transpositions. This framework can be generalized to arbitrary multidimensional data and process
meshes. All performance-relevant building blocks can be implemented with the help of the FFTW
software library. Therefore, our library offers great flexibility and portable performance. Similarly to
FFTW, we are able to compute FFTs of complex data, real data, and even- or odd-symmetric real
data. All the transforms can be performed completely in place. Furthermore, we propose an algo-
rithm to calculate pruned FFTs more efficiently on distributed memory architectures. For example,
we provide performance measurements of FFTs of sizes between 5123 and 81923 up to 262144 cores
on a BlueGene/P architecture, up to 32768 cores on a BlueGene/Q architecture, and up to 4096
cores on the Jiilich Research on Petaflop Architectures (JuRoPA).
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1. Introduction. Without doubt, the fast Fourier transform (FFT) is one of
the most important algorithms in scientific computing. It provides the basis of many
algorithms, and a tremendous number of applications can be listed. Since the famous
divide and conquer algorithm by Cooley and Tukey [4] was published in 1965, many
algorithms were derived for computing the discrete Fourier transform in O(nlogn).
This variety of algorithms and the continuous change of hardware architectures made
it practically impossible to find one FFT algorithm that is best suitable for all cir-
cumstances. Instead, the developers of the FFTW software library proposed another
approach. Under the hood, FFTW compares a wide variety of different FFT algo-
rithms and measures their runtimes to find the most appropriate one for the current
hardware architecture. The sophisticated implementation is hidden behind an easy
interface structure. Therefore, users of FFTW are able to apply highly optimized
FFT algorithms without knowing all the details about them. These algorithms have
been continuously improved by the developers of FFTW and other collaborators to
support new hardware trends, such as SSE, SSE2, graphic processors, and shared
memory parallelization. The current release 3.3.3 of FFTW also includes a very
flexible distributed memory parallelization based on the Message Passing Interface
standard (MPI). However, the underlying parallel algorithm is not suitable for cur-
rent massively parallel architectures. To give a better understanding, we start with a
short introduction to parallel distributed memory FFT implementations and explain
the problem for the three-dimensional FFT.
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There are two main approaches for parallelizing multidimensional FFTs; the first
is binary exchange algorithms, and the second is transpose algorithms. An intro-
duction and theoretical comparison can be found in [13]. We want to concentrate
on transpose algorithms; i.e., we perform a sequence of local one-dimensional FFTs
and two-dimensional data transpositions that are very similar to all-to-all communi-
cations. For convenience we consider the three-dimensional input array to be of size
ng X n1 X ng with ng > n; > ng, and all the dimensions should be divisible by the
number of processes.

It is well known that a multidimensional FFT can be efficiently computed by
a sequence of lower-dimensional FFTs. For example, a three-dimensional FFT of
size ng X n1 X ng can be computed by ng two-dimensional FFTs of size ni X no
along the last two dimensions followed by n1 X no one-dimensional FFTs of size ng
along the first dimension. Therefore, the first parallel transpose FFT algorithms were
based on one-dimensional data decomposition (also called slab decomposition), which
means that the three-dimensional input array is split along ng into equal blocks to
distribute it on a given number P < ng of MPI processes; i.e., all processes own
equal contiguous blocks of size ng/P X m1 X ny. At the first step, every process
is able to compute ng/P two-dimensional FFTs of size n1 X ng along the last two
dimensions, since all required data is locally available. Afterward, only nins one-
dimensional FFTs of size ng along the first dimension are left in order to complete
the three-dimensional FF'T. However, the required data is distributed along the first
dimension among all processes. Therefore, a data transposition (very similar to a call
of MPI_Alltoall) is performed that results in a one-dimensional data decomposition
of the second dimension; i.e., every process owns a contiguous block of size ng x
n1/P X ma. At this time the first dimension is local to each process. Therefore, we
are able to perform the remaining nins/P one-dimensional FFTs of size ng on every
process. Implementations of the one-dimensional decomposed parallel FFT are, for
example, included in the IBM PESSL library [9], the Intel Math Kernel Library [14],
and the FFTW [10] software package. Unfortunately, all of these FFT libraries lack
high scalability on massively parallel architectures because their data decomposition
approach limits the number of efficiently usable MPI processes by n,. Note that we
assumed the dimensions ng > ni; > na to be ordered. Therefore, the resulting data
decomposition ng X n1/P X ng implies a stronger upper bound on the number of
processes P than the initial data decomposition ng/P X ni X ng. Figure 1 shows an
illustration of the one-dimensional distributed FFT and an example of its scalability
limitation.

o
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Fi1Gc. 1. Decomposition of a three-dimensional array of size ng X n1 X ng = 8 x4 x4 on a
one-dimensional process grid of size P = 8. After the transposition (T) half of the processes remain
idle.

The main idea in overcoming this scalability bottleneck is to use a two-dimensional



PARALLEL FFT C215

data decomposition. Assume a two-dimensional mesh of Py x P; MPI processes. Two-
dimensional data decomposition (also called rod or pencil decomposition) means that
the three-dimensional input array is split along the first two dimensions ng and nq;
i.e., each process owns a contiguous block of size ng/Py X n1/Py x na. Now, every
process starts with the computation of ng/Py x n1/P; one-dimensional FFTs of size
ng, followed by a communication step that ensures a new two-dimensional data de-
composition with blocks of size ng/Py X ny X no/Py. After further ng/Py x na/Py
one-dimensional FFTs of size n; and one more communication step, we end up with
local blocks of size ng X n1/Py X n2/P;. The three-dimensional FFT is finished after
further ny /Py x na/ Py one-dimensional FFTs of size ng. Note that the number of data
transpositions increased by one in comparison to the one-dimensional decomposition
approach. However, these data transpositions are performed in smaller subgroups
along the rows and columns of the process mesh. Figure 2 shows an illustration of the
two-dimensional distributed FFT and its improved scalability in comparison to the
example above. The two-dimensional data decomposition allows us to increase the
number of MPI processes to at most nins. It was first proposed by Ding, Ferraro,
and Gennery [5] in 1995. Eleftheriou et al. [7] implemented a software library [6]
for power-of-two FFTs customized to the BlueGene/L architecture based on the two-
dimensional data decomposition. Please note that although the so-called volumetric
domain decomposition by Eleftheriou et al. [7] looks like a three-dimensional data de-
composition at first sight, it turns out that the underlying parallel FFT algorithm still
uses a two-dimensional data decomposition. Publicly available implementations of the
two-dimensional decomposition approach are the FFT package [22, 21] by Plimpton
from Sandia National Laboratories, the P3DFFT library [18, 17] by Pekurovsky, and
more recently the 2DECOMP&FFT library [16, 15] by Li. Furthermore, performance
evaluations of two-dimensional decomposed parallel FFTs have been published by
Fang, Deng, and Martyna [8] and Takahashi [23].
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Fic. 2. Distribution of a three-dimensional array of size ng X n1 X ng = 8 X 4 x4 on a
two-dimensional process grid of size Pop X P1 = 4 X 2. None of the processes remains idle in any
calculation step.

All these implementations offer a different set of features and introduce their own
interface. Since one dimension of the input array must remain local to all processes,
the parallel transpose algorithm of a three-dimensional FFT is restricted to a one-
or two-dimensional process mesh. However, this is no longer true if we want to com-
pute FFTs of dimension four or higher. In particular, there are two weak points
of the above-mentioned parallel implementations. First, there is no publicly avail-
able FF'T library that supports process meshes with more then two dimensions for
FFTs of dimension four or higher. Second, the two-dimensional data decomposition
is implemented only for three-dimensional FFTs—not for four- or higher-dimensional
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FFTs. Our parallel FFT framework aims to close this gap and offers one library for
all the above-mentioned use cases with an FFTW-like interface. In fact, we extend
the distributed memory parallel FFTW to multidimensional data decompositions.
Therefore, we are able to compute d-dimensional FFTs in parallel on a process mesh
of any dimension less than or equal to d — 1. In addition, our framework is able to
handle parallel FFTs with truncated input and output arrays (also known as over-
and undersampling) more efficiently than the above-mentioned parallel FFT libraries.
These so-called pruned FFTs save both memory and computational cost in compari-
son to the straightforward implementation, as we will see later. Last but not least, our
framework also supports the computation parallel sine and cosine transforms based on
a multidimensional data decomposition. Please note that sine and cosine transforms
are also supported by the latest release of the PSDFFT.

This paper is structured as follows. First, we introduce the notation that is used
throughout the remainder of this paper. In section 3 we describe the building blocks
that will be plugged together in section 4 to form a flexible parallel FFT framework.
Section 5 provides an overview of our publicly available, parallel FF'T implementation.
Runtime measurements are presented in section 6. Finally, we close with a conclusion.

2. Definitions and assumptions. In this section, we define the supported one-
dimensional transforms of our framework. These can be serial FFTs with either real
or complex input. Our aim is to formulate a unique parallel FFT framework that is
independent of the underlying one-dimensional transform. But this implies that we
have to keep in mind that, depending on the transform type, the input array will
consist of real or complex data. Whenever it is important to distinguish the array
type, we mention it explicitly.

2.1. One-dimensional FFT of complex data. Consider n complex numbers
fi € C, k=0,...,n—1. The one-dimensional forward discrete Fourier transform
(DFT) of size n is defined as

n—1

fi ::kae*%”k/" eC, 1=0,....,n—1.
k=0

Evaluating all f; by direct summation requires O(n2) arithmetic operations. In 1965
Cooley and Tukey published an algorithm called Fast Fourier Transform (FFT) [4]
that reduces the arithmetic complexity to O(nlogn). Furthermore, we define the
backward discrete Fourier transform of size n by

n—1
gi = Zﬁe”’“lk/” eC, k=0,...,n—1.
1=0

Note that with these two definitions the backward transform inverts the forward
transform only up to the scaling factor n, e.g., g = nfy for k =0,...,n — 1. We
refer to fast algorithms for computing the DFT of complex data by the abbreviation
c2¢c-FFT, since they transform complex inputs into complex outputs.

2.2. One-dimensional FFT of real data. Consider n real numbers g; € R,
k=0,...,n— 1. The one-dimensional forward DFT of real data is given by

n—1
froo=> fre®MmeC, 1=0,...,n-1
k=0
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Since the outputs satisfy the Hermitian symmetry
fn—l:fl*v ZZO,...,TL/Z,

it is sufficient to store the first n/2 4+ 1 complex outputs (division rounded down for
odd n). We define the backward DFT of Hermitian symmetric data of size n by

n—1
Ik = Zﬁe”””k/” €ER, k=0,...,n—1.
1=0

Corresponding to their input and output data types, we abbreviate fast O(nlogn) al-
gorithms for computing the forward DFT of real data with r2¢c-FFT and the backward
transform with c2r-FFT.

2.3. One-dimensional FFT of even- or odd-symmetric real data. De-
pending on the symmetry of the input data, there exist 16 different definitions of
DFTs of even- or odd-symmetric real data. At this point, we only give the definition
of the most commonly used discrete cosine transform of the second kind (DCT-II).
The definitions of the other transforms can be found, for example, in the FFTW
manual [11].

Consider n real numbers fi € R, k =0,...,n — 1. The one-dimensional DCT-II
is given by

n—1
fi=2)" fucos(n(l+1/2)k/n) €R, 1=0,...,n— L
k=0

Again, the DCT-II can be computed in O(nlogn). We summarize all fast algorithms
to compute the DFT of even- or odd-symmetric real data under the acronym r2r-FFT.

2.4. Pruned FFTs. Let N < n and N < n. For N complex numbers hy € C,
k=0,...,N — 1, we define the one-dimensional pruned forward DFT by

N-1
}ALIZtheizmkl/n, ZZO,...,N—I.
k=0

This means that we are interested in only the first N outputs of an oversampled
FFT. Obviously, we can calculate the pruned DFT with complexity O(nlogn) in the
following three steps. First, pad the input vector with zeros to the given DFT size n,
ie.,

Second, calculate the sums

n—1
fi= kae*%ilk/" €eC, 1=0,...,n—-1,
k=0

with a c2¢-FFT on size n in O(nlogn). Afterward, truncate the output vector of
length n to the needed length N, i.e.,

hi=f, 1=0,...,N—1.
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We use a similar three-step algorithm to compute the pruned r2¢-FFT and pruned
r2r-FFT. In the r2c-case the truncation slightly changes to

hi=f, 1=0,...,N/2+1,

in order to respect the Hermitian symmetry of the output array.

2.5. Multidimensional FFTs. Assume a multidimensional input array of ng x

- X ng_1 real or complex numbers. We define the multidimensional FFT as the

consecutive calculation of the one-dimensional FFTs along the dimensions of the input

array. Whenever we want to calculate several multidimensional FFT's of the same size,

we use the notation ng X --- X ng_1 X h, where the multiplier h tells us how many
FFTs of size ng x - -+ X ng_1 are supposed to be calculated simultaneously.

Again, we have to pay special attention to r2c-transforms. Here, we first compute
the one-dimensional r2c-FFTs along the last dimension of the multidimensional array.
Because of Hermitian symmetry the output array consists of ngx- - -Xng_o X (ng—1/2+
1) complex numbers. Afterward, we calculate the separable one-dimensional c2c-FFTs
along the first d—1 dimensions. For c2r-transforms we do it the other way around.

2.6. Parallel data decomposition. Assume a multidimensional array of size
Ng X -+ X Ng_1. Furthermore, for r < d assume an r-dimensional Cartesian com-
municator, which includes a mesh of Py x --- x P._1 MPI processes. Our parallel
algorithms are based on a simple block structured domain decomposition; i.e., every
process owns a block of No/Py X «++ X Np_1/P._1 X N, X --- X Ny_1 local data ele-
ments. The data elements may be real or complex numbers depending on the FFT
we want to compute. For the sake of clarity, we claim that the dimensions of the
data set should be divisible by the dimensions of the process grid, i.e., P;|N; for all
i=0,....,r—1and j =0,...,d— 1. This ensures that the data will be distributed
equally among the processes in every step of our algorithm. In order to make the
following algorithms more flexible, we can easily overcome these requirements. Note
also that our implementation does not depend on this restriction. Nevertheless, un-
equal blocks lead to load imbalances of the parallel algorithm and should be avoided
whenever possible. Since we claimed that the rank r of the process mesh is less than
the rank d of the data array, at least one dimension of the data array is local to the
processes.

Depending on the context we interpret the notation N;/P; either as a simple
division or as a splitting of the data array along dimension V; on P; processes in equal
blocks of size N;/Pj for all i =0,...,d—1and j =0,...,r — 1. This notation allows
us to compactly represent the main characteristics of parallel block data distribution,
namely, the local transposition of dimensions and the global array decomposition
into blocks. For example, in the case d = 3,7 = 2 we would interpret the notation
No/P; x No/Py x Ny as an array of size Ny X N1 x Na that is distributed on P,
processes along the first dimension and on P; processes along the last dimension.
Additionally, the local array blocks are transposed such that the last array dimension
comes first. We assume such multidimensional arrays to be stored in C typical row
major order; i.e., the last dimension lies consecutively in memory. Therefore, cutting
the occupied memory of a multidimensional array into equal pieces corresponds to a
splitting of the array along the first dimension.

3. The modules of our parallel FFT framework. The three major ingredi-
ents of a parallel transpose FFT algorithm are serial FFTs, serial array transposition,
and global array transpositions. All of these are somehow already implemented in
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the current release 3.3.2 of the FF'TW software library. Our parallel FFT framework
builds upon several modules that are more or less wrappers to these FFTW routines.
We now describe the modules from bottom to top. In the next section we combine
the modules into our parallel FFT framework.

3.1. The serial FFT module. The guru interface of FFTW offers a very gen-
eral way to compute multidimensional vector loops of multidimensional FFTs [10].
However, we do not need the full generality and therefore wrote a wrapper that
enables us to compute multidimensional FFTs of the following form. Assume a three-
dimensional array of hg X n x hy real or complex numbers. Our wrapper allows us to
compute the separable one-dimensional FFTs along the second dimension, i.e.,

FFT N
thﬂXhl —>h0><7’LXh1.

Thereby, we denote Fourier transformed dimensions by hats. Note that we do not
compute the one-dimensional FFTs along the first dimension hg. Later, we will use
this dimension to store the parallel distributed dimensions. The additional dimension
hy at the end of the array allows us to compute a set of hy serial FFTs at once.
The serial FFTs can be any of the serial FFTs that we introduced in section 2, e.g.,
c2¢-FFT, r2¢-FFT, c2r-FFT, or r2r-FFT.

In addition, our wrapper allows the input array to be transposed in the first two
dimensions

nx ho x hi ' ho X A x
and the output array to be transposed in the first two dimensions
hoxnxthTF—STﬁxhoxhl.

This is a crucial feature, since the local data blocks must be locally transposed before
the global communication step can be performed. Experienced FFTW users may
have noticed that the FFTW guru interface allows us to calculate local array trans-
positions and serial FFTs in one step. Computation of a local array transposition is
indeed a nontrivial task because one has to think of many details about the memory
hierarchy of current computer architectures. FFTW implements cache oblivious array
transpositions [12], which aim to minimize the asymptotic number of cache misses in-
dependently of the cache size. Unfortunately, we experienced that the performance of
an FFT combined with the local transposition is sometimes quite poor. Under some
circumstances it is even better to do the transposition and the FFT in two separate
steps. In addition, it is not possible to combine the transposition with a multidimen-
sional r2c FFT. Therefore, we decided to implement an additional planning step into
the wrapper. Our serial FFT plan now consists of two FFTW plans. The planner
decides whether the first FF'TW plan performs a transposition, a serial FF'T, or both
of them. The second FFTW plan performs the outstanding task to complete the
serial transposed FFT. In contrast to the FFTW planner, our additional planner is
very time consuming, since it has to plan and execute several serial FFTs and data
transpositions. The user can decide whether it is worth the effort when he calls the
PFFT planning interface. Additionally, we can switch off the serial FFT in order to
perform the local transpositions

nXh()Xhl?hQXnXhl
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and

hoXnXhl%nXh()Xhl

solely.

Remark 1. In addition to the order of transposition and serial FF'T our planner
also decides which plan should be executed in place or out of place to reach the
minimal runtime.

Remark 2. All of these steps can be performed in place. This is one of the great
benefits we get from using FFTW.

3.2. The serial pruned FFT module. The serial FFTs can be easily gener-
alized to pruned FFTs with the three-step algorithm from section 2.4. The padding
with zeros and the truncation steps have been implemented as modules in PFFT. To
keep notation simple, we do not introduce further symbols to mark a serial FFT as
a pruned FFT. Instead, we declare that every one-dimensional FFT of size n can be
pruned to N inputs and N outputs. This means

(3.1) ho X N x hi 5 ho x N x hy

abbreviates the three-step pruning algorithm

ho X N X hy — ho X1 xhy 55 ho x 7 x hy — ho x N x hy.

This holds analogously if the first two dimensions of the FFT input or output are
transposed, e.g.,

Nxhoxth%Thox]\Athl,

(3.2) hoxNxthTF—nghoxhl.

3.3. The global data transposition module. Suppose a three-dimensional
array of size Ny x N1 X h is mapped on P processes, such that every process holds
a block of size Ny/P x Ny x h. The MPI interface of FFTW version 3.3.2 includes
a parallel matrix transposition (T) to remap the array into blocks of size N;/P x
Ny x h. This algorithm is also used for the one-dimensional decomposed parallel FFT
implementations of FFTW. In addition, the global transposition algorithm of FFTW
supports the local transposition of the first two dimensions of the input array (TI) or
the output array (TO). This allows us to handle the following global transpositions:

No/Px Ny xh 5 Ni/Px Nyxh,
(3.3) Ny x No/P x h % N1/P x Ny x h,
No/P x Ny x h T—Tg) Ny x Ni/P x h.

There are great advantages of using the parallel transposition algorithms of FFTW
instead of direct calls to corresponding MPI functions. FFTW does not use only
one algorithm to perform an array transposition. Instead different transposition al-
gorithms are compared in the planning step to get the fastest one. This provides us
with portable hardware adaptive communication functions. There are three different
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transpose algorithms implemented in the current release of FFTW. All of them use
some local transpositions in order to get contiguous chunks of memory and a global
transposition that is equivalent to a call of MPI_Alltoall or MPI_Alltoallv. Indeed, the
first variant is based on MPI_Alltoallv. A second algorithm uses scheduled pointwise
communication in order to substitute MPI_Alltoallv. This algorithm can be performed
in place, which means that per process only one buffer of size (Ng x Ny x h)/P? is
necessary. Note that it is impossible to implement such a memory-efficient global
transpose with the help of the standard MPI_Alltoall functions. FFTW can also use
a third procedure, a recursive transposition pattern, as a substitute for MPI_Alltoall.
In summary, we see that the global transposes of FFTW will be at least as good as
an implementation based on MPI_Alltoall or even better if the planner finds a faster
algorithm. All of these details are hidden behind the easy to use interface of FFTW.
However, we need a slight generalization of the transpositions that are available in
FFTW to make them suitable for our parallel FFT framework. If we set

No=1Li xhy, Ny=Loxhy, h=has,
the transpositions (3.3) turn into
Ll/thlxLoxhothLLo/thoxLl><h1><h2,
(3.4) LoxhoxLl/thlxhg?TfLo/thoxlehlxhg,
Ll/thleoxhoxhng(;Llxhleo/thoxhg.

Remark 3. Although this substitution looks straightforward, we must choose the
block sizes carefully. Whenever P does not divide Ly or Ly, we cannot use default
block sizes (Lg x ho)/P and (L X hy)/P of FFTW. Instead we must ensure that
only Ly and L; are distributed on P processes. This corresponds to the block sizes
LQ/P X ho and Ll/P X hl.

Remark 4. Similar to FFTW, our global data transpositions operate on real
numbers only. However, complex arrays that store real and imaginary parts in the
typical interleaved way can be seen as arrays of real pairs. Therefore, we need only
double hs to initiate the communication for complex arrays.

4. The parallel FFT framework. Now, we have collected all the ingredients
to formulate the parallel FFT framework that allows us to calculate h pruned multi-
dimensional FFTs of size

FFT » &
N()X-'-XNd_l —>N0><'-'XNd_1

on a process mesh of size Py X -+ x P._1, r < d. Our forward FFT framework starts
with the r-dimensional decomposition given by

No/Py X -+ X Np_1/Pr_1 X N X -+ X Ng_1 X h.
For convenience, we introduce the notation

XNS::

s=l

Ny x---xX N, :1l<u,
1 2> .

Figure 3 lists the pseudocode of the parallel forward FFT framework.
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1: fort < 0,...,d—r—2do

2 ho+ X _gNs/Pyx X27PN,
3: N < Ng_1_4

4 hy+— X%, Nyxh

5 hox Nxhy 3 hox N x hy

6: end for

7. fort < 0,...,7r—1do

8  ho+ XL, Neyi/Pox XI5V N, /P,
9: N <+ N,_;

10: hy < ><§;T1Jrl Ny x h

11: hoXNXhllf%rNXh()Xhl

12: )

13: Lo+ N,_;

14: hg X', Noyi/Pox XT_L2 N, /P,
15: L1+ No_i_1

16: h1+1 .

17: ha ><§;T1Jrl Ng x h

18: P+ P._; 1

19: LoxhoxLl/thl><h2%>LO/P><h0><Ll><h1><h2
20: end for A

21: hg + X'—o Noy1/Ps

22: N + Ny

1
23: h1 < X 11
FFT

24: hoXNXh1—>h0XNXh1

Fic. 3. Parallel forward FFT framework.

Within the first loop we use the serial FFT module (3.1) to calculate the one-
dimensional (pruned) FFTs along the last d — r — 1 array dimensions. In the second
loop we calculate r one-dimensional pruned FFTs with transposed output (3.2) in-
terleaved by global data transpositions with transposed input (3.4). Finally, a single
nontransposed FFT (3.1) must be computed to finish the full d-dimensional FFT.
The data decomposition of the output is then given by

Nl/PO X oo er,g/Pr,l X N, x -+ x Ny_1 % h.

Note that the dimensions of the output array are slightly transposed.

Now, the parallel backward FFT framework can be derived very easy since we
need only revert all the steps of the forward framework. The backward framework
starts with the output decomposition of the forward framework

Nl/PO X oo X NT_Q/PT_l X Ny X+ x Ny_1 x h
and ends with the initial data decomposition
No/Py X -+ X Np_1/Pr_1 X N. X -+ X Ng_1 X h.

Figure 4 lists the parallel backward FFT framework in pseudocode.
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1: h() — XS,é Ns—i—l/Ps

2: N+ Ny )

3 by XL Ny xh
4:h0><NXh1FE>rh0XNXh1

5 fort<r—1,...,0do

6: L1+ N,_;

7. hi X2 Nep1/Pox X252 N, /P,
8: Lo+ Nyo_i_1

9: ho + 1 R

100 hy«— X2 Noxh

11: P+ P

12: Ll/PXhlXL()Xh()XhQTISLlXh1XL0/P><h0Xh2
13:

14: ho+ X't Nep1 /Py x X_P N, /P,
15 N+« N,_,

16: hy < ><§;T1Jrl Ny x h

17: NXh()XthTil;rh()XNX}ll

18: end for

19: fort«—d—r—2,...,0do

200 ho 4 X1y Ny/Pyx XZ2' N,

21: N Ndflft

22: hy < X’Si;;,t Ny x h

23: hOXNXthi;rh()XNX}ll

24: end for

F1G. 4. Parallel backward FFT framework.

Remark 5. A common use case for parallel FFT is the fast convolution of two
signals. Therefore, we need to compute the parallel FFT of both signals, multiply
both signals pointwise, and compute the backward FFT. The pointwise multiplication
can be performed trivially with transposed order of dimensions.

Remark 6. For some applications it might be unacceptable to work with trans-
posed output after the forward FFT. As we have already seen, the backward frame-
work reverts all transpositions of the forward framework. Therefore, execution of
the forward framework followed by the backward framework, where we switch off
the calculation of all one-dimensional FFTs, gives an FFT framework with nontrans-
posed output. However, this comes at the cost of extra communication and local data
transpositions.

The structure of our parallel frameworks can be easily overlooked by the flow
of data distribution. Therefore, we repeat the algorithm for the important special
cases of a three-dimensional FFT with one-dimensional and two-dimensional process
meshes.

4.1. Example: Three-dimensional FFT with one-dimensional data de-
composition. Assume a three-dimensional array of size Ny x N1 x Ns that is dis-
tributed on a one-dimensional process mesh of size Py. For this setting the parallel
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forward FFT framework becomes

No/PO XN1 XN2 FE)I' NQ/PQ XN1 XNQ :'i(;: Nl XN()/PO XN2

?TI> Nl/PO XNO XN2 FE)I' Nl/PQ XNQ XNQ.

The parallel backward FFT framework starts with the transposed input data and
returns to the initial data distribution

Nl/P() XNO XNZ FE)I—

N
F_I_il-)r N()/P() XNl XNZ FE)I— N()/P() XN1 XNQ.

/P() XNO XNQ TI>O ]\71 XN()/P() XNZ

4.2. Example: Three-dimensional FFT with two-dimensional data de-
composition. Assume a three-dimensional array of size Ny x N1 x No that is dis-
tributed on a two-dimensional process mesh of size Py x P;. For this setting the
parallel forward FFT framework becomes

NQ/PQXNl/Pl XN2 'il'i(;)r NQXN()/P()XNl/Pl
%}NQ/P1XNO/POXN1 'il'i(;)r N1><N2/P1><NQ/PQ
%} Nl/PQ X Ng/Pl X NO Fi;l' Nl/PQ X Ng/Pl X No.

The parallel backward FFT framework starts with the transposed input data and
returns to the initial data distribution

Nl/PQ X Ng/Pl X NO Fi;l' Nl/PQ X Ng/Pl X NO

T_T>O Nl X Ng/Pl X No/PO FTE{ Ng/Pl X No/PO X N1

|
T_T>O N2 X No/PO X Nl/Pl F_I_il;r NQ/PQ X Nl/Pl X Ng.

5. The PFFT software library. We implemented the parallel FFT frameworks
given by Figures 3 and 4 in a publicly available software library called PFFT. The
source code is distributed under the GNU GPL at [20]. PFFT follows the philosophy of
FFTW. In fact, it can be understood as an extension of FFTW to multidimensional
process grids. Similar to the parallel distributed memory interface of FFTW, the
user interface of PFFT splits into two layers. The basic interface depends only on
the essential parameters of parallel FFT and is intended to provide an easy start
with PFFT. More sophisticated adjustments of the algorithm are possible with the
advanced user interface. This includes block size adjustment, automatic ghost cell
creation, pruned FFTs, and the calculation of multiple FFTs with one plan. Most
features of FFTW are directly inherited by our PFFT library. These include the
following:

e We employ fast O(N log N) algorithms of FEFTW to compute arbitrary-size
discrete Fourier transforms of complex data, real data, and even- or odd-
symmetric real data.

e The dimension of the FFT can be arbitrary.

e PFFT offers portable performance; e.g., it will perform well on most plat-
forms.

e The application of PFFT is split into a time consuming planning step and a
high performance execution step.
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e Installing the library is easy. It is based on the common sequence of configure,
make, and make install.

e The interface of PFFT is very close to the MPI interface of FFTW. In fact,
we tried to add as few extra parameters as possible.

e PFFT is written in C but also offers a Fortran interface.

e FFTW includes shared memory parallelism for all serial transforms. This
enables us to benefit from hybrid parallelism.

e All steps of our parallel FFT can be performed completely in place. This is
especially remarkable for the global transposition routines.

e Confirming to good MPI programming practice, all PFFT transforms can be
performed on user defined communicators. In other words, PFFT does not
enforce the user to work with MPI_COMM_WORLD.

e PFFT uses the same algorithm to compute the size of the local array blocks
as FF'TW. This implies that the FF'T size need not be divisible by the number
of processes.

Furthermore, we added some special features to support repeated tasks that often
occur in practical application of parallel FFTs.

e PFFT includes a very flexible ghost cell exchange module. A detailed de-
scription of this module is given in section 5.1.

e PFFT accepts three-dimensional data decomposition even for three-dimen-
sional FFTs. However, the underlying parallel FFT framework is still based
on two-dimensional decomposition. A more detailed description can be found
in section 5.2.

e As we already described in section 2.4, PFFT explicitly supports the parallel
calculation of pruned FFTs. In section 6.3 we present some performance
results of pruned FFTs.

5.1. The ghost cell module. In algorithms with block based domain decompo-
sition processes often need to operate on data elements, which are not locally available
on the current process but on one of the next nearest neighbors. PFFT assists the
creation of ghost cells with a flexible module. The number of ghost cells can be cho-
sen arbitrarily and differently in every dimension of the multidimensional array. In
contrast to many other libraries, PFFT also handles the case in which the number of
ghost cells exceeds the block size of the next neighboring process. This is especially
important for unequal block sizes, where some processes get less data then others.
PFFT uses the information about the block decomposition to determine the origin of
all requested ghost cells. Furthermore, we implemented a module for the adjoint ghost
cell send. The adjoint ghost cell send reduces all ghost images to their original owner
and sums them up. This feature is especially useful in the case in which different
processes are expected to update their ghost cells.

5.2. Remap of three-dimensional into two-dimensional decomposition.
Many applications that use three-dimensional FFTs are based on a three-dimensional
data decomposition throughout the rest of their implementation. Therefore, the ap-
plication of our two-dimensional decomposed parallel FFT framework requires non-
trivial data movement before and after every FFT. To simplify this task, we used the
same ideas as in section 4 to derive a framework for the data reordering. Assume
h three-dimensional arrays of total size Ny x N1 X N2 x h to be distributed on a
three-dimensional process mesh of size of size Py x P; X (Qo X Q1) with block size
No/Pox N1/P1 x N2/(Qo x Q1) x h. We do not want to calculate a serial FFT along
h. Therefore, it does not count as a fourth dimension of the input array. Note that
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h0<—N0/P0 XNl/Pl

N+ N2/(Qo x Q1)
hi1 < h
h()XNXth—O)NXh()Xhl

Lo(—Nl/Pl

ho+ 1

Ll(—Ng/QO

h1<—N0/P0

ho < h

: P(—Ql

: Ll/PXh1XL0Xh0XhQTI>OL1Xh1XL()/PXh()XhQ

_= = =

—= =

Lo(—NQ/PQ

:h0<—N1/(P1><Q1)

:Ll(—NQ

h1<—1

: ho <+ h

:P<—QQ
:Ll/thleoxhoxhng(;lehl><L0/P><h0><h2

e e
© 0 N W

[\
(=)

NN
N

: ho(—NQ/(P()XQ())XNl/(PlXQl)
:N(—NQ

h1<—h
:NXh()Xhl;}hQXNXhl

N NN

Fic. 5. Parallel framework for remapping three-dimensional data decomposition to two-
dimensional data decomposition.

the number of processes along the last dimension of the process mesh is assumed to
be of size Qg x Q1. The main idea is to distribute the processes of the last dimen-
sion equally on the first two dimensions. The short notation of our data reordering
framework is given by

No/Po x N1/P1 x NaJ(Qo x Q1) x h

N2/(Qo x Q1) x No/Po x N1/P1 x h

N2/Qo x No/Py x N1/(P1 x Q1) X h
Na X No/(Py x Qo) X N1/(P1 X Q1) X h
No/(Po x Qo) x N1/(Py x Q1) x N x h,

—
TO
T
—
TO
T
—
TO
—
TI

and the more expressive pseudocode is listed in Figure 5. Since this framework is based
on the modules that we proposed in section 3, we again benefit from cache-oblivious
transpositions that are implemented within FFTW. Furthermore, this framework can
be performed completely in place. To derive a framework for reordering data from
two-dimensional decomposition to three-dimensional decomposition, we just need to
revert all the steps of the framework from Figure 5, and so we omit the pseudocode
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for this framework.

6. Numerical results/runtime measurements. In this section we show the
runtime behavior of our PFFT software library in comparison to the FFTW and
P3DFFT software libraries. In addition, we give some performance measurement of
the pruned FFTs. The runtime tests have been performed on three different hardware
architectures.

1. BlueGene/P in Research Center Jilich (JuGene) [1]: One node of a Blue-
Gene/P consists of 4 IBM PowerPC 450 cores that run at 850 MHz. These
4 cores share 2 GB of main memory. Therefore, we have 0.5 GB RAM per
core whenever all the cores per node are used. The nodes are connected by a
three-dimensional torus network with 425 MB/s bandwidth per link. In total
JuGene consists of 73728 nodes, i.e., 294912 cores.

2. BlueGene/Q in Research Center Jilich (JuQueen) [2]: One node of a Blue-
Gene/Q consists of 16 IBM PowerPC A2 cores that run at 1.6 GHz. These
16 cores share 16 GB SDRAM-DDR3. Therefore, we have 1 GB RAM per
core whenever all the cores per node are used. The nodes are connected by
a five-dimensional torus network. In total JuQueen consists of 24576 nodes,
i.e., 393216 cores.

3. Jilich Research on Petaflop Architectures (JuRoPA) [3]: One node of Juropa
consists of 2 Intel Xeon X5570 (Nehalem-EP) quad-core processors that run
at 2.93 GHz. These 8 cores share 24 GB DDR3 main memory. Therefore, we
have 3 GB RAM per core whenever all the cores per node are used. The nodes
are connected by an Infiniband QDR with nonblocking fat tree topology. In
total JuRoPA consists of 2208 nodes, i.e., 17664 cores.

6.1. Strong scaling behavior of PFFT on BlueGene/P. We investigated
the strong scaling behavior of PFFT [20] and P3DFFT [17] on the BlueGene/P ma-
chine in Research Center Jiilich. Complex to complex FFTs of size 5123 and 10243
have been run out-of-place with 64 of the available 72 racks, i.e., 262144 cores. Since
P3DFFT supports only real to complex FFTs, we applied P3DFFT to the real and
imaginary parts of a complex input array to get times comparable to those of the
complex to complex FFTs of the PFFT package. The test runs consisted of 10 al-
ternate calculations of forward and backward FFTs. Since these two transforms are
inverse except for a constant factor, it is easy to check the results after each run.
The average wall clock time and the average speedup of one forward and backward
transformation can be seen in Figure 6 for an FFT of size 5123 and in Figure 7 for an
FFT of size 1024%. Memory restrictions force PSDFFT to utilize at least 32 cores on
BlueGene/P to calculate an FFT of size 5123 and 256 cores to perform an FFT of size
1024. Therefore, we chose the associated wall clock times as references for speedup
and efficiency calculations. Note that PFFT can perform these FFTs on half the cores
because of less memory consumption. However, we only recorded times on core counts
which both algorithms were able to utilize to get comparable results. Unfortunately,
the PFFT test run of size 10243 on 64 racks died due to a hardware failure, and we
were not able to repeat this large test. Nevertheless, our measurements show that
the scaling behavior of PFFT and P3DFFT are quite similar. Therefore, we expect
roughly the same runtime for PFFT of size 1024% on 64 racks as we observed for
P3DFFT. It turns out that both libraries are comparable in speed. However, from
our point of view the flexibility of PFFT is a great advantage over P3DFFT. See
also [19] for more details.
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FIG. 6. Wall clock time (left) and speedup (right) for FEFT of size 5123 up to 262144 cores on
BlueGene/P.
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FiG. 7. Wall clock time (left) and speedup (right) for FFT of size 10243 up to 262144 cores on
BlueGene/P.

6.2. Comparision of PFFT and FFTW on JuRoPA. We performed our
PFFT library on the Jillich Research on Petaflop Architectures (JuRoPA) and com-
pared the scaling behavior with the one-dimensional decomposed parallel FFTW. The
runtimes of a three-dimensional FFT of size 256% given in Figure 8 show a good scal-
ing behavior of our two-dimensional decomposed PFFT up to 2048 cores, while the
one-dimensional data decomposition of FFTW cannot make use of more than 256
cores.

6.3. Parallel pruned FFT. As already mentioned, our parallel FFT algorithm
includes the calculation of pruned multidimensional FFTs. Most of the time serial
FFT libraries do not support the calculation of pruned FFTs, since the user can
easily pad the input array with zeros and calculate the full FFT with the library.
However, the zero padding step is not that easy in the parallel case. There we need
to redistribute the data first in order to decompose the larger, zero padded input
array. In addition, the parallel computation of zero padded multidimensional FFT's
leads to serious load imbalance since some processes calculate one-dimensional FFT's
on vectors that are full of zeros. This phenomenon is getting even worse for higher-
dimensional FFTs. PFFT completely avoids the data redistribution, since it applies
the one-dimensional pruned FFT algorithm (3.1) rowwise whenever the corresponding
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FIG. 9. Pruned FFT with underlying FFT size 256° on 162 cores on BlueGene/P.

data dimension is locally available on the processes.

We want to illustrate the possible performance gain with an example. Therefore,
we compute a three-dimensional pruned FFT of size 2563 on 256 cores of a BlueGene/P
architecture. The data decomposition scheme is based on a two-dimensional process
mesh of size 16 X 16. We alter the pruned input size N x N x N and the pruned output
size N x N x N between 32 and 256. Figure 9 shows the runtime of pruned PFFT
for different values of N and N. We observe an increasing performance benefit for
decreasing input array size N and also for decreasing output array size N. Without
the pruned FFT support, we would have to pad the input array of size N x N x N
with zeros to the full three-dimensional FFT size n x n x n and calculate this FFT
in parallel. The time for computing an FFT of size 2562 corresponds to the time in
Figure 9 for N = N = 256.

6.4. Weak scaling behavior of PFFT on BlueGene/Q and JuRoPA. In
order to investigate the weak scaling behavior on BlueGene/Q we performed parallel
FFTs of size 5123, 10243, 20483, 40962, and 81923 on 8, 64, 512, 4096, and 32768 cores,
respectively. This gives a constant local array size of 2563 per process. We measured
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F1G. 10. Wall clock time for FFT of constant local array size 2563 per core up to P = 32768
cores on BlueGene/Q (left) and up to P = 2048 cores on JuRoPA (right). The figure includes the
whole runtime of one forward and one backward FFT (PFFT) and the time spent for communication
(Comm) and computation (Comp). The numbers next to data points indicate the the total FFT size.

the average time of 10 forward and backward FFTs with transposed input/output
on each process and plotted the maximum over all processes in Figure 10. We used
exactly the same setting on JuRoPA but stopped at 4096 cores. The results are also
given in Figure 10. In addition, we show the time that is spent for communication
and computation. Note that the computational part also includes the local transposes
of our serial FFT module.

6.5. Strong scaling behavior of PFFT on BlueGene/Q and JuRoPA. Fi-
nally, we compare the strong scaling behavior of our parallel in-place and out-of-place
FFTs for different FFT sizes on BlueGene/Q and JuRoPA. Again, we performed 10
loops of a forward and backward FFT with transposed input/output. The maximum
average time for FFTs of size 5123, 10243, 20483, 40963, and 81923 with up to 32768
cores on BlueGene/Q are given in Figures 11, 12, 13, 14, and 15, respectively. In addi-
tion, we show the time that is spent for communication and computation. Note that
the computational part also includes the local transposes of our serial FF'T module.
For every test run we chose the minimal possible core count to start the benchmark.
We observe that the in-place transforms are indeed more memory efficient, since they
allow us to run the benchmarks with smaller core counts. The out-of-place transforms
are slighlty faster for large core counts. However, the in-place transforms are most
important for small numbers of cores, where less memory is available. There is no
difference in the performance of in-place and out-of-place FFTs for small core counts.
Our parallel FFT framework provides an overall good scaling behavior. For large
numbers of cores we observe some jumps of the runtimes due to the communication
part. This shall be investigated in future research.

The maximum average time of 10 forward and backward FFTs of size 5123, 10243,
20483, and 40963 with up to 2048 cores on JuRoPA are given in Figures 16, 17, 18, and
19, respectively. Here we see nearly the same behavior. There is even less difference
in the performance of in-place and out-of-place FFTs on JuRoPA. The big jump in
Figure 16 results from the fact that an in-place transposition with one single core can
be totally omitted, while the out-of-place transposition needs at least one copy of the
local memory.
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F1G. 11. Wall clock time for in-place and out-of-place FFT of size 5123 up to P = 32768 cores
on BlueGene/Q. The figure includes the whole run time of one forward and one backward FFT
(PFFT) and the time spent for communication (Comm) and computation (Comp).
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F1G. 12. Wall clock time for in-place and out-of-place FFT of size 1024° up to P = 32768
cores on BlueGene/Q. The figure includes the whole run time of one forward and one backward
FFT (PFFT) and the time spent for communication (Comm) and computation (Comp).

7. Conclusion. We developed a parallel framework for computing arbitrary
multidimensional FFTs on multidimensional process meshes. This framework has
been implemented on top of the FFTW software library within a parallel FFT soft-
ware library called PFFT. Our algorithms can be computed completely in place and
use the hardware adaptivity of FFTW in order to achieve high performance on a wide
variety of different architectures. Runtime tests up to 262144 cores of the BlueGene/P
supercomputer proved PFFT to be as fast as the well-known P3DFFT software pack-
age. Therefore, PFFT is a very flexible, high performance library for computing
multidimensional FFTs on massively parallel architectures.
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Fic. 13. Wall clock time for in-place and out-of-place FFT of size 20483 up to P = 32768
cores on BlueGene/Q. The figure includes the whole runtime of one forward and one backward FFT
(PFFT) and the time spent for communication (Comm) and computation (Comp).
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Fic. 14. Wall clock time for in-place and out-of-place FFT of size 40963 up to P = 32768
cores on BlueGene/Q. The figure includes the whole runtime of one forward and one backward FFT
(PFFT) and the time spent for communication (Comm) and computation (Comp).
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Fic. 15. Wall clock time for in-place and out-of-place FFT of size 81923 up to P = 32768
cores on BlueGene/Q. The figure includes the whole runtime of one forward and one backward FFT
(PFFT) and the time spent for communication (Comm) and computation (Comp).
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Fic. 16. Wall clock time for in-place and out-of-place FFT of size 5123 up to P = 2048 cores
on JuRoPA. The figure includes the whole runtime of one forward and one backward FFT (PFFT)
and the time spent for communication (Comm) and computation (Comp).
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Fic. 17. Wall clock time for in-place and out-of-place FFT of size 10243 up to P = 2048 cores
on JuRoPA. The figure includes the whole runtime of one forward and one backward FFT (PFFT)
and the time spent for communication (Comm) and computation (Comp).
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Fic. 18. Wall clock time for in-place and out-of-place FFT of size 20483 up to P = 2048 cores
on JuRoPA. The figure includes the whole runtime of one forward and one backward FFT (PFFT)
and the time spent for communication (Comm) and computation (Comp).
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F1G. 19. Wall clock time for in-place and out-of-place FFT of size 40963 up to P = 2048 cores
on JuRoPA. The figure includes the whole runtime of one forward and one backward FFT (PFFT)
and the time spent for communication (Comm) and computation (Comp).
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