Structure Formation - From a Cloud of Atoms to a Crystal -

(T10) Valence electrons in condensed matter: How interference acts on phase stability and electronic transport H. Solbrig

- 1. Basic aspects
- 2. Electronic properties derived from spectral information
- 3. Spectral curves are formed by electronic interference
- 4. Conclusions

1. Basic aspects

- 2. Electronic properties derived from spectral information
- 3. Spectral curves are formed by electronic interference
- 4. Conclusions

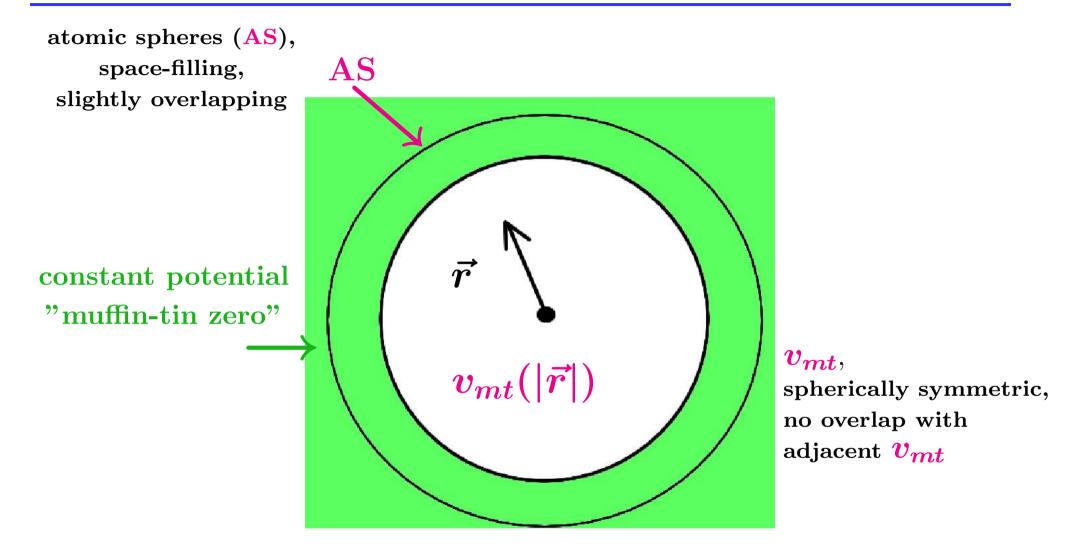
Effective atoms

nuclei + they carry the mass Coulomb electrons part of the electrons captured by the nuclei valence electrons ions ions screened by the valence electrons effective atoms valence electrons

conclusion:

• effective atoms modelled by spherical potentials inside of atomic spheres

Atomic sphere with a muffin-tin potential inside

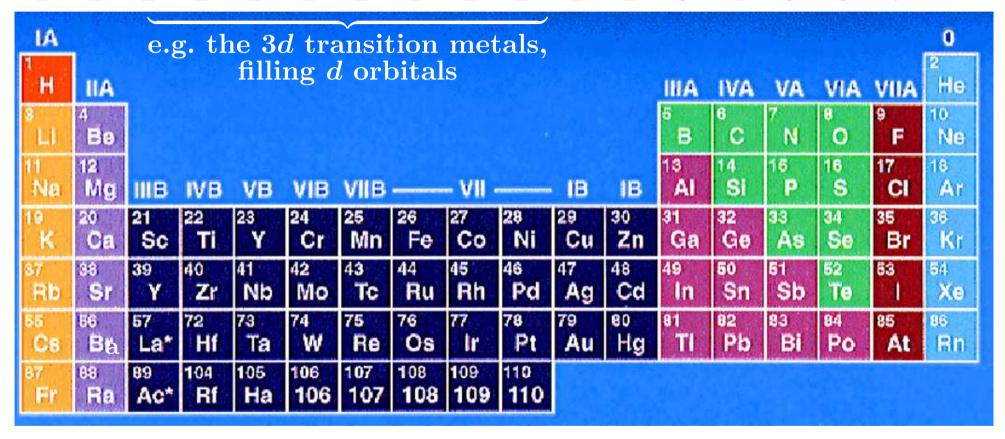


conclusion:

• effective atoms treated as atomic spheres immersed into a constant potential

Average valence charge density ρ

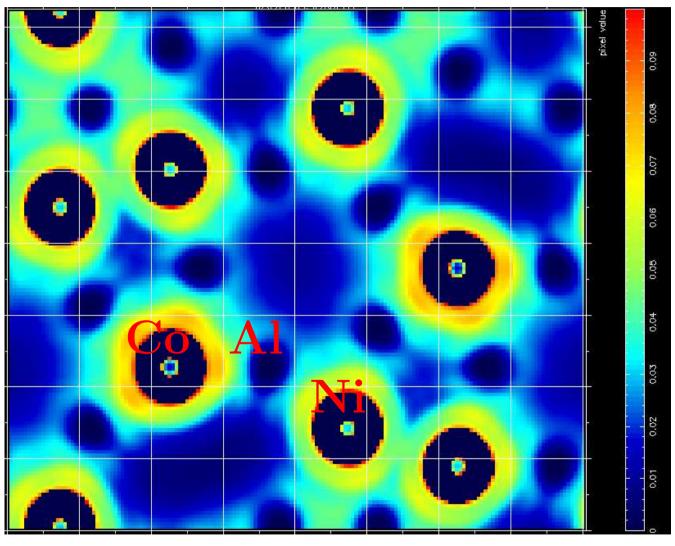
estimate \approx (atom number density) \times (average number of valence electrons per free atom)



definition:

ullet density parameter r_s = the radius in bohr (a_0) of the average sphere per electron $ho \equiv \left(rac{4\pi}{3}(r_s a_0)^3
ight)^{-1}$

Real materials have inhomogeneous valence densities



 $m Al_{34}Ni_{12}Co_4$ structure model after (Mihalkovič et al. 2002) average valence density: $r_s=1.6$

$$\leftarrow \frac{\text{cyan}}{\text{r}_{\text{s}} \approx 2 \text{ like fcc-Al}}$$

conclusion:

even trend towardsCo - Al covalent bonding

ABINIT & PGPLOT

Scaling with the average valence density: Kinetic energy

scaling relations for the free-electron ground state $(\rho \propto r_s^{-3})$

$$p_F \propto
ho^{1/3} \propto r_s^{-1}, \quad \overline{\epsilon_{kin}} \propto
ho^{2/3} \propto r_s^{-2}, \quad P_{deg} \propto
ho * \overline{\epsilon_{kin}} \propto r_s^{-5}$$

scaling of a small screened Coulomb interaction

$$\overline{\epsilon_C} \propto
ho^{1/3} \propto r_s^{-1} \ rac{\overline{\epsilon_C}}{\overline{\epsilon_{kin}}} \propto r_s$$

white dwarf stars $(r_s \approx 10^{-2})$ are FE-like with $\sim \%$ Coulomb corrections radius R estimated from pressure equilibrium in the center

$$P_{deg}[\propto R^{-5}] = P_{grav}[\propto R^{-4}]$$

 $\implies R \approx 7000 \text{ km, just like planets}$

conclusion:

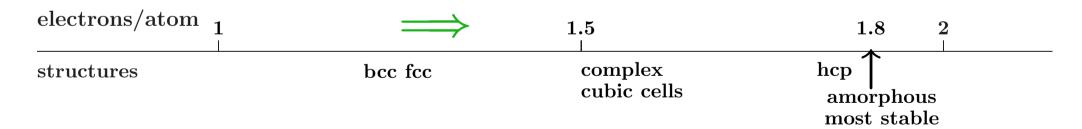
• increasing electron density makes matter more free-electron like

Scaling with the average valence density: Structure

by increasing external pressure P_{ext} on simple metals

$ m P_{ext}/GPa$	$ \begin{array}{c} \text{low} \\ 1 \end{array} $	intermediate a few 10	high 100
structures	bcc fcc	large complex cubic cells lower	bcc fcc hcp
coordinations	high		high
goals	maximize	enable	avoid
	ion-ion spacings	Bragg reflections	overlap of
	preserves screening	and covalency	ion cores

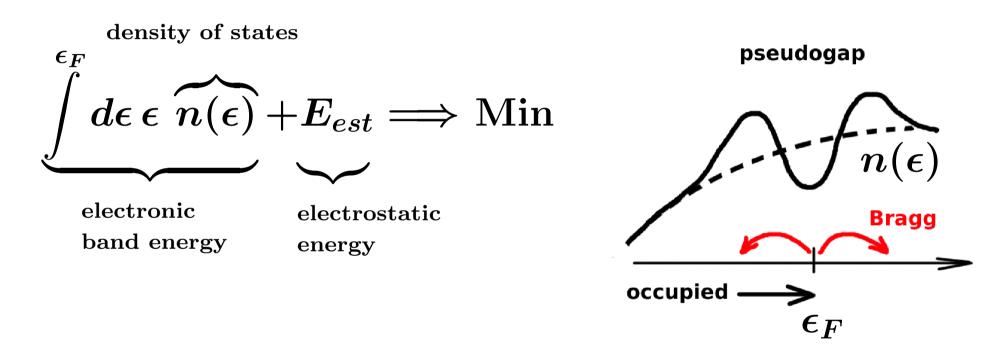
by increasing $\frac{\text{electrons}}{\text{atom}}$ ratio on alloying simple metals (watch atom number density)



conclusion:

• increasing valence density promotes the electronic influence

Towards stability at low temperatures



conclusions:

- avoid charged effective atoms
- create half-occupied pseudogaps at the Fermi energy

- 1. Basic aspects
- 2. Electronic properties derived from spectral information
- 3. Spectral curves are formed by electronic interference
- 4. Conclusions

Temperature-dependent weighting of spectral information

electronic conductivity $\sigma(T)$

thermopower
$$S(T)$$
 ...

$$ec{j} = \sigma(T) \; ec{E} \ \sigma(T) = \mathcal{L}^{11}(T)$$

$$ec{E} = S(T) \, rac{\partial}{\partial ec{r}} \, T(ec{r})$$
 $S(T) = rac{1}{|e|T} rac{\mathcal{L}^{12}(T)}{\sigma(T)}$

kinetic coefficients

$$\mathcal{L}^{ij}(T) = \int d\epsilon \, \sigma(\epsilon) \, W^{ij}(\epsilon - \mu(T))$$

$$\mu(T) \approx \epsilon_F - \frac{\pi^2}{6} \, \left(\frac{d \ln(n(\epsilon))}{d \, \epsilon}\right)_{\epsilon_F} (k_B T)^2 + \dots \quad \text{(chemical potential)}$$

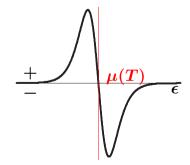
weight functions W^{ij} derived from the Fermi-Dirac distribution $f^0(\epsilon - \mu(T))$

$$W^{11} = -\frac{\partial f^0}{\partial \epsilon}$$

$$f^0(\epsilon - \mu(T))$$

$$\overset{\text{width}}{\sim k_B T}$$

$$W^{12} = -(\epsilon - \mu) \left(-rac{\partial f^0}{\partial \epsilon}
ight)$$



Temperature-dependent weighting of spectral information

electronic conductivity $\sigma(T)$

$$ec{j} = \sigma(T) \; ec{E} \ \sigma(T) = \mathcal{L}^{11}(T)$$

thermopower S(T)

$$ec{E} = S(T) \frac{\partial}{\partial ec{r}} T(ec{r})$$

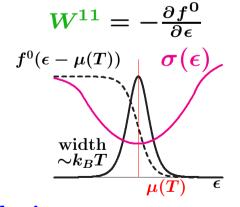
$$S(T) = rac{1}{|e|T} rac{\mathcal{L}^{12}(T)}{\sigma(T)}$$

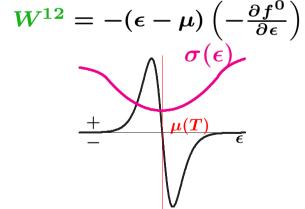
kinetic coefficients

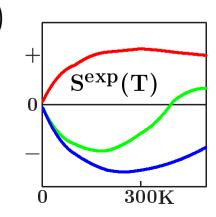
$$\mathcal{L}^{ij}(T) = \int d\epsilon \, \sigma(\epsilon) \, W^{ij}(\epsilon - \mu(T))$$

$$\mu(T) \approx \epsilon_F - \frac{\pi^2}{6} \, \left(\frac{d \ln(n(\epsilon))}{d \, \epsilon} \right)_{\epsilon_F} (k_B T)^2 + \dots \quad \text{(chemical potential)}$$

weight functions W^{ij} derived from the Fermi-Dirac distribution $f^0(\epsilon - \mu(T))$



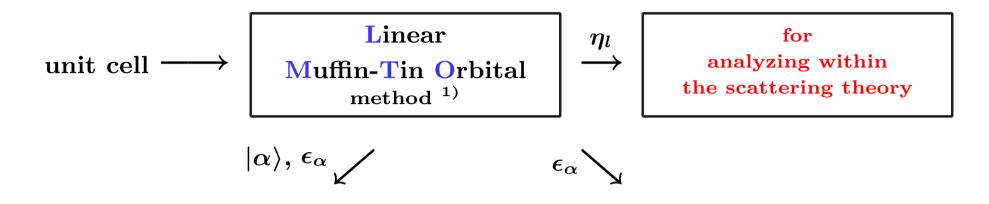




conclusion:

• peculiar temperature dependence due to spectral fine structures on the thermal scale

Spectral information calculated by the LMTO method



conductivity 2)
$$\sigma(\epsilon) = \frac{e^2 h}{V} \langle \sum_{\alpha,\beta} |\langle \alpha | v | \beta \rangle|^2 \delta(\epsilon - \epsilon_{\alpha}) \delta(\epsilon - \epsilon_{\beta}) \rangle_{\vec{k}}$$

density of states $n(\epsilon) = \langle \sum \delta(\epsilon - \epsilon_{lpha})
angle_{ec{k}}$

- 1) O.K. Andersen 1975
- 2) Kubo 1957, Greenwood 1958
- 3) Butcher 1972

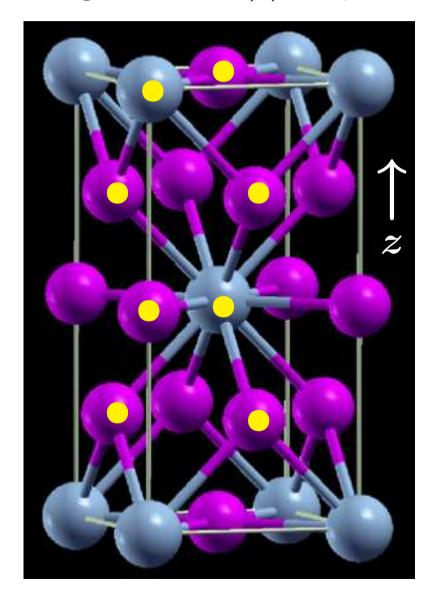
diffusivity
$$\sigma(\epsilon) = \frac{e^2}{V} n(\epsilon) D(\epsilon)$$

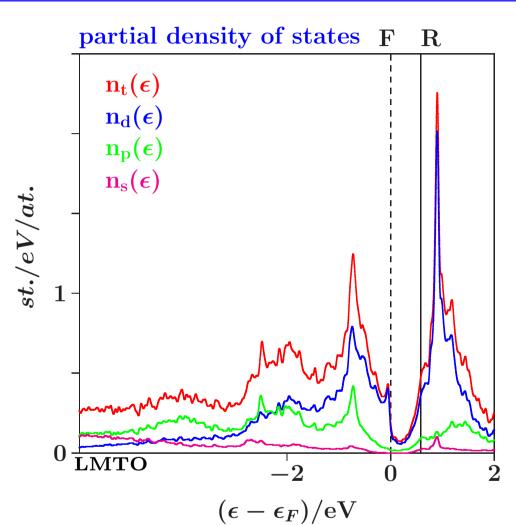
conclusion:

• low conductivity due to lacking diffusive states at ϵ_F

Spectral features of Al₃V: Pseudogaps

Pearson's handbook, no. 139 (DO₂₂) tetragonal unit cell (•): 6 Al, 2 V



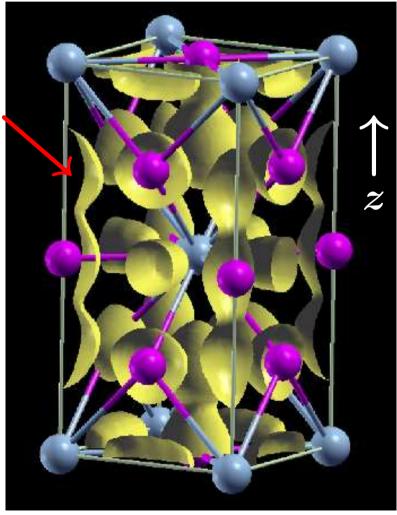


conclusions:

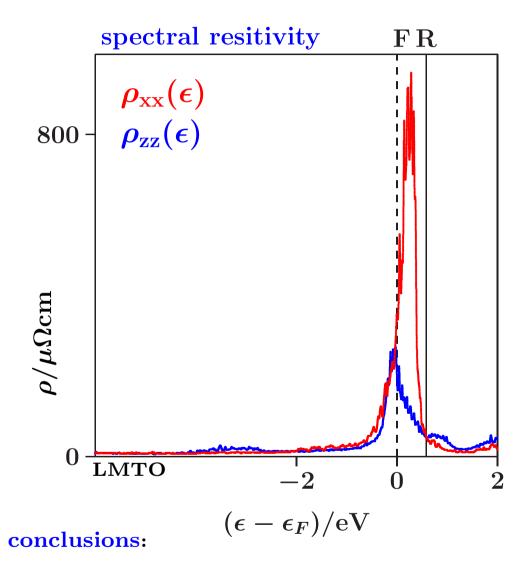
- sp-DOS: wide, deep pseudogaps centered at ϵ_F
- d-DOS: low between ϵ_F and ϵ_R , peak-dip feature at ϵ_F

Spectral features of Al₃V: Anisotropies

V-Al-Vdensity bridges () iso-density surface $0.033 \text{ e}/au^3$



ABINIT

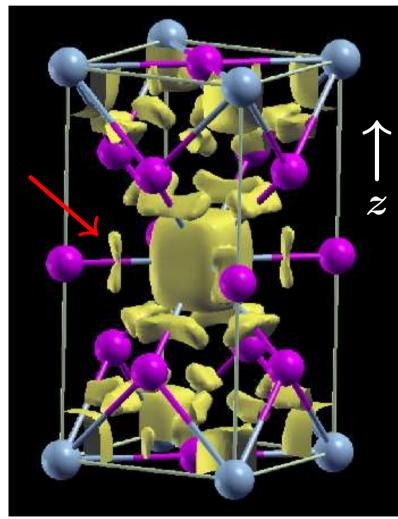


- clearly anisotropic transport between ϵ_F and ϵ_R
- valence density: V-Al-V bridges along z, V-V links along xy

Spectral features of Al₃V: Covalent bonding

bond charges (\sqrt{\sqrt{\gamma}})

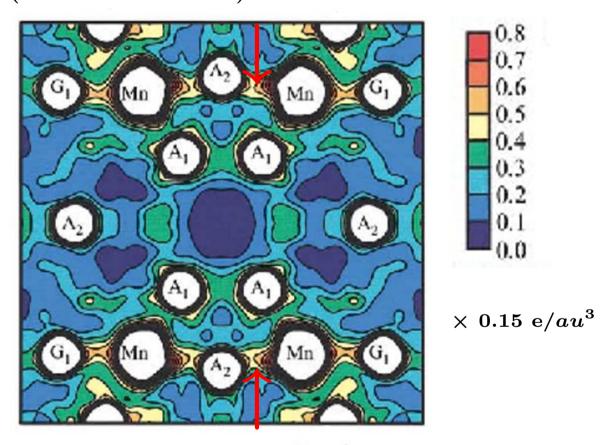
on short Al-V bonds, iso-density surface $0.041 \text{ e}/au^3$



ABINIT

experiment: α -AlMnSi

synchrotron radiation reveals covalent Al-Mn bonding (Kirihara $et\ al.\ 2000$)



conclusion:

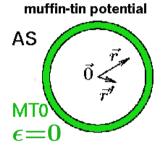
• covalent bonding between metallic components

- 1. Basic aspects
- 2. Electronic properties derived from spectral information
- 3. Spectral curves are formed by electronic interference
- 4. Conclusions

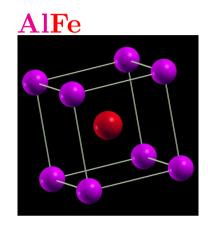
Bare effective atoms: The electronic density of states (DOS)

take an atomic sphere (AS) from LMTO, fix the inside potential, remove environment

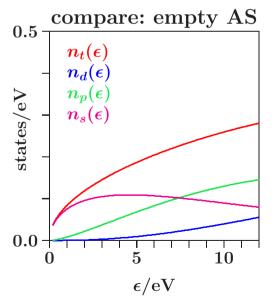
electronic density of states of the AS:

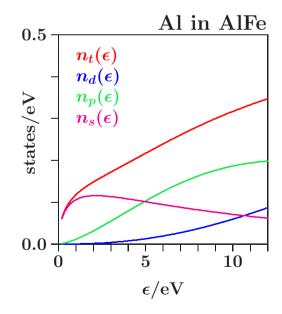


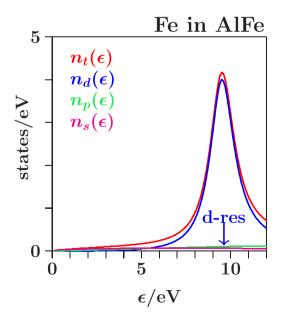
$$n^o(\epsilon) = -rac{2}{\pi} \int\limits_{AS} d^3ec{r} \int\limits_{AS} d^3ec{r}' \delta(ec{r}'-ec{r}) \ \Im G(ec{r}',ec{r},\epsilon) \ = \sum_l n_l^o(\epsilon)$$



atomic spheres of an AlFe crystal







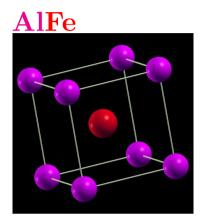
conclusion:

• the effective atoms: Al is clearly FE-like, TMs contribute virtual bound states

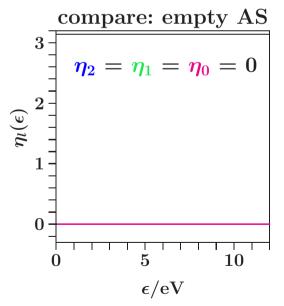
Bare effective atoms: The scattering phase shifts

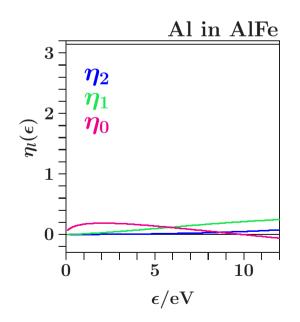
scattering amplitudes $f_l(\epsilon)$ and phase shifts $\eta_l(\epsilon)$ of the bare AS:

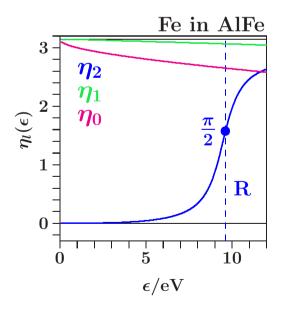
$$f_l \psi_{lm} \qquad f_l(\epsilon) = rac{1}{2} \left(e^{i \, 2 \, \eta_l(\epsilon)} - 1
ight) \ \implies -1 \quad ext{for} \quad \eta_l \Longrightarrow rac{\pi}{2}$$



atomic spheres of an AlFe crystal:







conclusion:

• scattering by the effective atoms: Al - weak, TMs - strong with fast spectral variation

Each AS makes a "structure analysis" of its environment

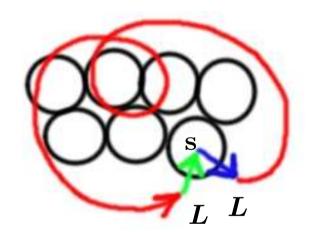
suppose, we know the self-consistent atomic spheres (partial DOS $n_{sl}^{o}(\epsilon)$, phase shifts η_{sl}) electronic density of states of the ASs including modification by the environment:

$$egin{aligned} n_s(\epsilon) &= -rac{2}{\pi} \int\limits_{ASs} d^3ec{r} ~\Im ~G(ec{r},ec{r},\epsilon) = \sum\limits_l n_{sl}^o(\epsilon) \left(1 + \Rerac{1}{2\,l+1} \sum\limits_{m=-l}^l T_{sL,sL}(\epsilon)
ight) \end{aligned}$$

 $\{T_{sL,s'L'}\}$, the scattering-path matrix (L=l,m)

multiple scattering of vacuum waves

$$T_{sL,sL} = e^{i\eta_{sl}} \langle sL | \left(I - PF
ight)^{-1} P | sL
angle \, e^{i\eta_{sl}}$$
 propagation scattering



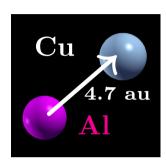
conclusion:

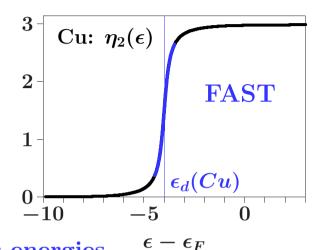
• spectral features arise from the interference of scattering-path contributions

Fano profiles: Interaction line/continuum i.e. fast/slow

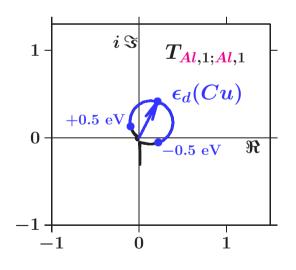
simple model: 1 Al and 1 Cu at nearest neighbor distance

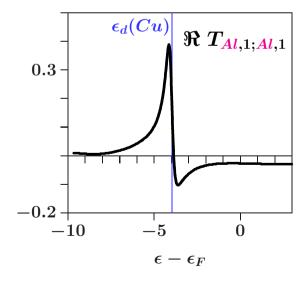
How does the Al p-DOS change?

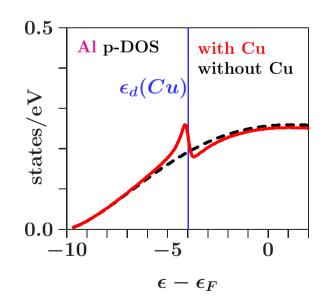




a resonant nearest neighbor moves spectral weight to lower energies







conclusion:

• enhanced Al p-DOS below the d-TM resonance

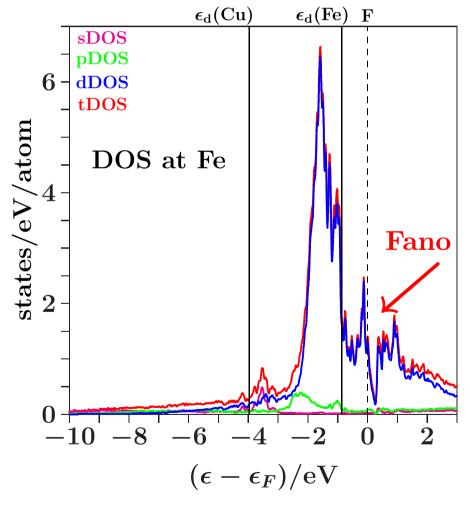
i-AlCuFe-(1/1): Stabilizing Fano profile at the Fermi level

A crystalline approximant of the icosahedral Al-Cu-Fe quasicrystal (Cockayne 1993)

cubic cell: 128 atoms = 80 Al + 32 Cu + 16 Fe



Fano effect at the Fermi energy, fast spectral variation due to multiple scattering in the Fe sublattice

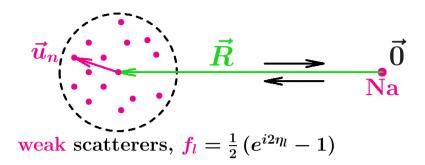


conclusion:

• the fast process can also arise from a sublattice

Weak scatterers: Influence of the medium-range order

one atom (e.g.Na) couples to
a distant cluster (⇒ asymtotic expansion)
of weak scatterers (⇒ single scattering)



confine to the sDOS of Na

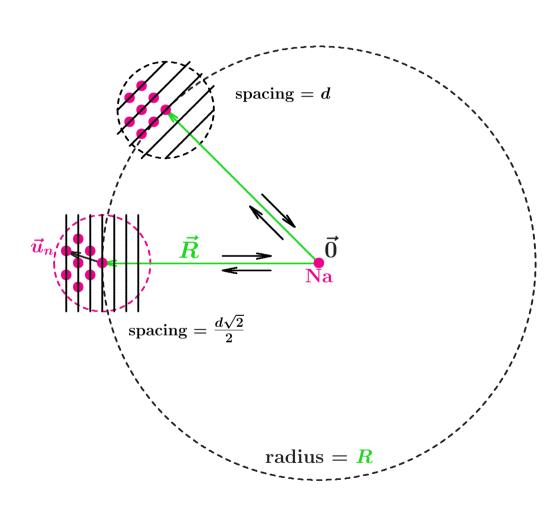
$$n_{oldsymbol{Na},0} = n_{oldsymbol{Na},0}^o \left(1 + \Re T_{oldsymbol{Na},0;oldsymbol{Na},0}
ight)$$

$$T_{Na,0;Na,0}pprox e^{i\eta_o}rac{e^{ikR}}{ikR} \sum_{n}^{ ext{scatterers}} e^{i2k ilde{R}ec{u}_n} \sum_{l} (2l+1)f_l(-1)^l rac{e^{ikR}}{ikR} e^{i\eta_o}$$
 $ext{scattering amplitude}$
 $ext{for}$
 $ext{backscattering}$

conclusion:

• strong backscattering if all exponentials in the structure amplitude are "in phase"

Crystals: Friedel-spaced lattice planes



The structure amplitude,

$$F(-1) = \sum_{n}^{ ext{scatterer}} e^{i2k \hat{\vec{R}} \vec{m{u}}_n},$$

will be large if

- ullet the cluster atoms are densely arranged on planes perpendicular to $\widehat{ec{R}}$
- the plane spacing is

$$2\pi/2k$$

which is a Bragg condition.

conclusions:

- interference-supported spectral structures even deep in the valence band
- electrons at ϵ_F support plane spacings $\approx 2\pi/2k_F$ (Friedel wave length)
- enhanced electronic influence due to nesting of Bragg reflections (e.g. fcc-type reciprocal lattices, bcc-type real space)

Liquid + amorphous phases: Friedel-spaced neighbor shells

liquid/amorphous sp phases, for simplicity only s waves considered

inward reflection by a homogeneous medium

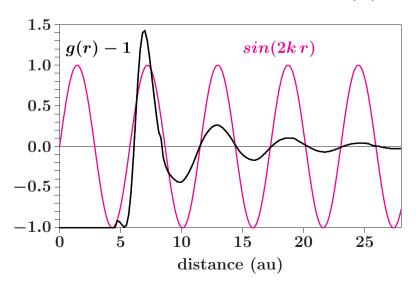
inward reflection by the neighbor shell sequence

$$n_0(\epsilon)pprox n_0^o(\epsilon)\left\{1+rac{2\pi\mathcal{N}_{at}sin(\eta_0)}{k^3}\left(cos(3\eta_0)+\int\limits_0^\infty d(2kr)\left(g(r)-1
ight)\!sin(2kr+3\eta_0)
ight)
ight)
ight\}$$

compare with the structure factor

$$S(q)-1=rac{4\pi\mathcal{N}_{at}}{q^3}\int\limits_0^\infty d(qr)\,qr\,(g(r)-1)rac{sin(qr)}{q^r}$$

constructive interference if g(r) - 1 and sin(2kr) oscillate with the same radial period

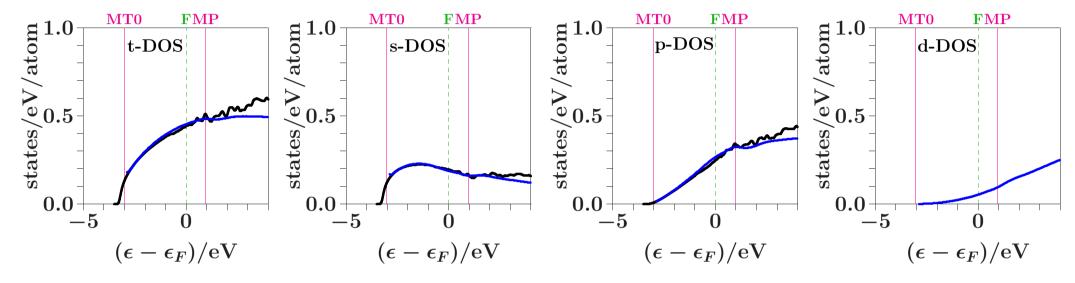


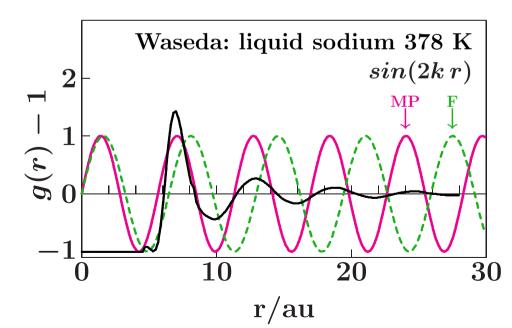
conclusion:

if radial period = Friedel wavelength = $\frac{2\pi}{2k_F}$ then structure fitted to electrons at ϵ_F and main diffraction peak K_p close to $2k_F$

Weak interference: Liquid Na at 378 K

partial DOS (LMTO, single backscattering by 65 000 neighbors)





onset energy of diffraction influence:

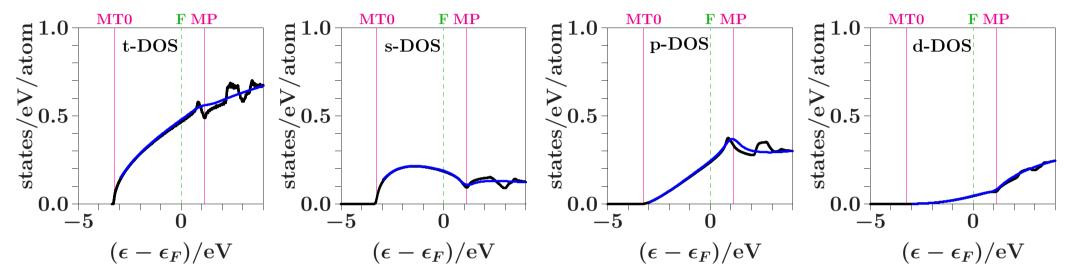
$$MP = (K_p/2)^2$$
 ryd above MT0

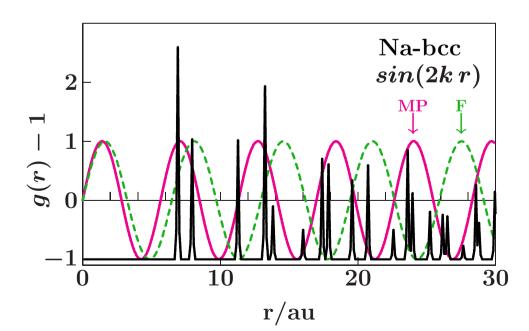
conclusions:

- neighbor shell spacing not perfectly fitted to interference at ϵ_F
- interference above ϵ_F weakened due to thermal shell broadening
- no notable multiple scattering

Weak interference below ϵ_F : Na-bcc

partial DOS (LMTO, single backscattering by 65 000 neighbors)





onset energy of diffraction influence:

$${
m MP}=(K_p/2)^2$$
 ryd above ${
m MT0}$

conclusions:

- in the occupied valence band:

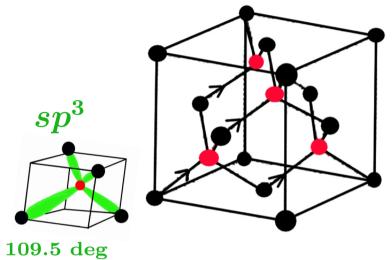
 weak interference,

 single backscattering is sufficient
- high ductility expected

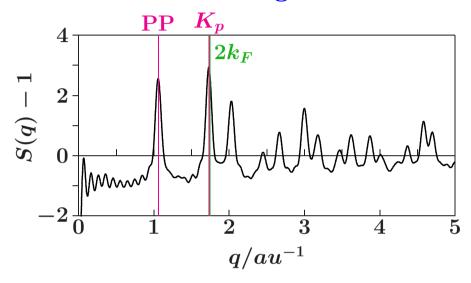
Covalent bonding and medium-range interference: Si-dia

diamond lattice = $2 \times fcc$

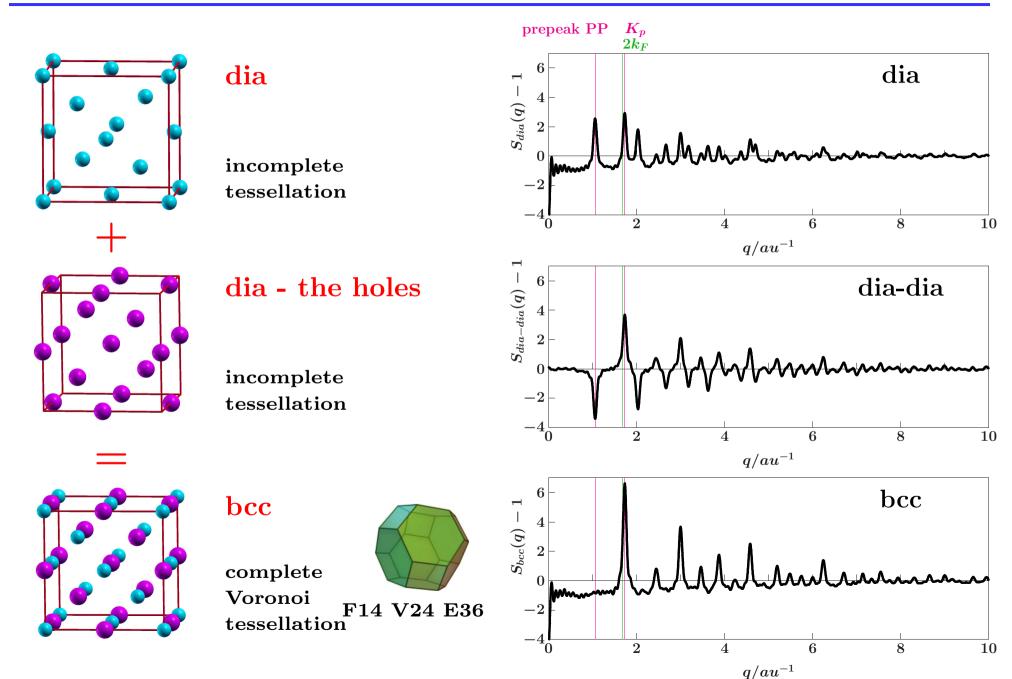
centered tetrahedra in 4 of 8 octants



structure factor of neighbor shells



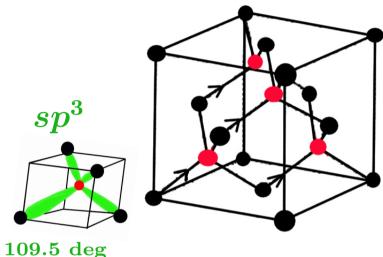
Diamond lattice: Origin of the prepeak



Covalent bonding and medium-range interference: Si-dia

diamond lattice = $2 \times fcc$

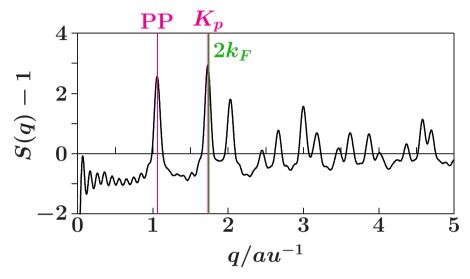
centered tetrahedra in 4 of 8 octants



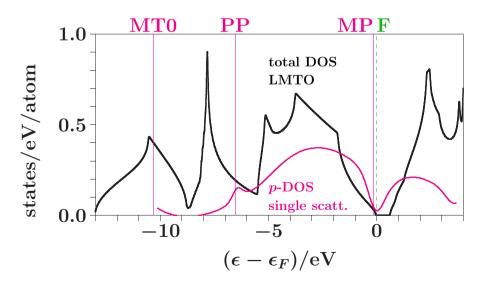
conclusions:

- Si network: covalent bonding by means of local sp^3 hybrides, gap at ϵ_F
- Si neighbor-shell sequence: structure factor has main diffraction peak K_p at $2k_F$, ϵ_F in ryd above MT0
- single scattering p-DOS: 65 000 neighbors, deep pseudogap at ϵ_F

structure factor of neighbor shells



density of states



General Conclusions

Spectral curves are formed by the interference of scattering-path contributions.

Stabilizing processes shift occupied electron states to lower energies.

Peculiar temperature dependence results from spectral features close to the thermal energy scale.

Nearly-free electron arguments are valid if main diffraction peaks are nested close to $2k_F$. However, there are no reliable rules for matching the energy scales.