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For any integer d × (n + 1) matrix A and parameter β ∈ Cd let MA(β) be the associated

A-hypergeometric (or GKZ) system in the variables x0, . . . ,xn. We describe bounds for the

(roots of the) b-functions of bothMA(β) and its Fourier transform along the hyperplanes

(xj = 0). We also give an estimate for the b-function for restricting MA(β) to a generic

point.

1 Introduction

Let D be the ring of algebraic C-linear differential operators on Cn+1 with coordinates

x0, . . . ,xn.

Definition 1.1 (Compare [4, 5]). Let M be a left D-module and pick an element m ∈ M

with annihilator I ⊆ D. If (ViD) is the vector space spanned by the monomials xα∂β with

α0 − β0 ≥ i then the b-function of m ∈ M along the coordinate hyperplane x0 = 0 is the

minimal monic polynomial b(s) that satisfies: b(x0∂0) · m ∈ (V1D) · m in M , which is to

say b(x0∂0) ∈ I + (V1D) in D.
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If M is cyclic, that is, M = D/I , then we call b-function of M the b-function in

the above sense of the element 1 + I ∈ M . �

The b-function exists in greater generality along any hypersurface ( f = 0), as

long as the moduleM is holonomic, cf. [4]. The V-filtration of Kashiwara and Malgrange

then takes the form (ViD) = {P ∈ D | f i+k divides P • f k for k � 0}. Both the V-filtration

and the b-function are intimately connected to the restriction of the given D-module to

the hypersurface. The purpose of this note is to give, for any A-hypergeometric system

as well as its Fourier transform, an explicit arithmetic description of a bound for the

root set of the b-function along any coordinate hyperplane that involves the parameter

β in a very elementary way.

We have several applications in mind: first, it is a longstanding question to

understand themonodromy ofA-hypergeometric systems, and for this purpose the roots

of the b-function can be of some use. On the other hand, the Fourier transform of an A-

hypergeometric system often (see [15]) appears as a direct image module under a natural

torus embedding given by the columns of the matrix A. This point of view turns out to

be extremely useful for Hodge theoretic considerations of A-hypergeometric systems

(see [9]). It is one of the fundamental insights of Morihiko Saito (see [11, Section 3.2])

that the boundary behavior of variations of Hodge structures (or, more generally, of

mixed Hodge modules) is controlled by the Kashiwara–Malgrange filtration along such

a boundary divisor. In the case of a cyclic D-module, such as A-hypergeometric systems

or their Fourier transforms, one can often deduce a large part of this filtration from the

values of the b-function. We refer to [10] for an immediate application of our results.

In a third direction, one can also see our calculation of the b-function of the Fourier

transform as a refinement of [1, 15] geared towards restriction of A-hypergeometric

systems.

In the last part, we compute an upper bound for the b-function of restriction of

the A-hypergeometric system to a generic point, again in elementary terms of A and β.

Since the restriction of a D-module to a point is a dual object to the zeroth level solution

functor, our estimate can be viewed as a step towards a sheafification in β of the solution

space, a problem that remains unsolved.

2 Basic notions and results

Notation. Throughout, the base field is C and we consider a C-vector space V of

dimension n+ 1. �
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In this introductory section, we review basic facts onA-hypergeometric systems

as well as the Euler–Koszul functor. Readers are advised to refer to [6] for more detailed

explanations.

Notation 2.1. For any integer matrix A, let RA (respectively OA) be the polynomial ring

over C generated by the variables ∂j (respectively xj) corresponding to the columns aj of

A. We identify OA with the symmetric algebra on HomC(V ,C) ∼= ⊕
C · xj. Further, let DA

be the ring of C-linear differential operators on OA, where we identify ∂

∂xj
with ∂j and

multiplication by xj with xj so that both RA and OA become subrings of DA. �

2.1 A-hypergeometric systems

Let A = (a0, . . . ,an) be an integer d × (n + 1) matrix, d ≤ n + 1. For convenience, we

assume that ZA = Zd. For (v1, . . . ,vr) = v ∈ Zr , we denote by v+,v− the vectors given by

(v+)j = max(0,vj) and (v−)j = max(0,−vj).

For the complex parameter vector β ∈ Cd consider the system of d homogeneity

equations

Ei • φ = βi · φ, (2.1)

where Ei = ∑n
j=0 ai,jxj∂j is the i-th Euler operator, together with the toric (partial

differential) equations

{(∂v+ − ∂v−︸ ︷︷ ︸
:=�v

) • φ = 0 | A · v = 0}. (2.2)

In RA, the toric operators {�v|A · v = 0} generate the toric ideal IA. The quotient

SA := RA/IA

is naturally isomorphic to the semigroup ring C[NA]. In DA, the left ideal generated by

all equations (2.1) and (2.2) is the hypergeometric ideal HA(β). We put

MA(β) := DA/HA(β);

this is theA-hypergeometric system introduced and first investigated by Gelfand, Graev,

Kapranov, and Zelevinsky, in [2] and a string of other articles. 	
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2.2 A-degrees

If the rowspan of A contains 1A we call A homogeneous. Homogeneity is equivalent

to IA defining a projective variety, and also to the system HA(β) having only regular

singularities [3, 13]. A more general A-degree function on RA and DA is induced by:

−degA(xj) := aj =: degA(∂j).

We denote degA,i(−) the A-degree function associated to the weight given by the i-th row

of A, so degA = (degA,1, . . . , degA,d).

An RA- (respectively DA-)module M is A-graded if it has a decomposition

M = ⊕
α∈Zd Mα such that the module structure respects the grading degA(−) on RA

(respectively DA) and M . If N is an A-graded RA-module, then we denote degA(N) ⊆ Zd

the set of all degrees of all non-zero homogeneous elements of N . The quasi-degrees

qdegA(N) of N are the points in the Zariski closure in Cd of degA(N).

As is common, ifM is A-graded thenM(b) denotes for each b ∈ ZA its shift with

graded structure (M(b))b′ = Mb+b′ .

2.3 Euler–Koszul complex

Since

xuEi − Eix
u = −(A · u)ix

u,

∂uEi − Ei∂
u = (A · u)i∂

u,

we have

EiP = P(Ei − degA,i(P)) (2.3)

for any A-homogeneous P ∈ DA and all i.

On the A-graded DA-module M one can thus define commuting DA-linear

endomorphisms Ei via

Ei ◦m := (Ei + degA,i(m)) ·m

for A-homogeneous elements m ∈ M . In particular, if N is an A-graded RA-module one

obtains commuting sets of DA-endomorphisms on the left DA-module DA ⊗RA N by

Ei ◦ (P ⊗Q) := (Ei + degA,i(P) + degA,i(Q))P ⊗Q.
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The Euler–Koszul complex K•(N ;β) of the A-graded RA-module N is the homo-

logical Koszul complex induced by E − β := {(Ei − βi)◦}d1 on DA ⊗RA N . In particular,

the terminal module DA ⊗RA N sits in homological degree zero. We denote the homology

groups of K•(N ;β) by H•(N ;β). Implicit in the notation is “A”: different presentations

of semigroup rings that act on N yield different Euler–Koszul complexes.

If N(b) denotes the usual shift-of-degree functor on the category of graded RA-

modules, then K•(N ;β)(b) and K•(N(b);β − b) are identical.

2.4 The toric category

There is a bijection between faces τ of the cone R≥0A and A-graded prime ideals

I τ
A = IA + RA{∂j | j 
∈ τ } of RA containing IA. If the origin is a face of R≥0A, it corresponds

to the ideal I∅
A = (∂0, . . . , ∂n). In general, RA/I τ

A
∼= C[Nτ ].

An RA-module N is toric if it is A-graded and has a (finite) A-graded composition

chain

0 = N0 � N1 � N2 · · · � Nk = N

such that each composition factor Ni/Ni−1 is isomorphic as A-graded RA-module to an

A-graded shift (RA/I τ
A)(b) for some b ∈ ZA and some face τ . The category of toricmodules

is closed under the formation of subquotients and extensions.

For toric input N , the modules H•(N ;β) are holonomic. As DA is RA-free, any

short exact sequence 0 −→ N ′ −→ N −→ N ′′ −→ 0 of A-graded RA-modules produces a

long exact sequence of Euler–Koszul homology. If β is not a quasi-degree of N then the

complex K•(N ;β) is exact, and if N is a maximal Cohen–Macaulay module then K•(N ;β)

is a resolution of H0(N ;β).

2.5 The Euler space

Notation 2.2. TheC-linear spanof theEuler operators {Ei}d1 is called theEuler space. Let

E be in the Euler space. Then E is in a unique fashion (as rk(A) = d) a linear combination

E = ∑
ciEi. With βE := ∑

ciβi, we have E − βE ∈ HA(β). We further write degE(−) for the

degree function
∑

ci degA,i(−). �

Denote θj = xj∂j and θ = (θ0, . . . , θn). A linear combination
∑

j vjθj is in the Euler

space if and only if the coefficient vector v = (v0, . . . ,vn), interpreted as a linear func-

tional on Cn+1 via v((q0, . . . ,qn)) := ∑
viqi, is the pull-back via A of a linear functional
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on Cd. In other words,

[v · θT =
∑
j

vjθj is in the Euler space] ⇔ [v = c · A for some c ∈ Cd].

If L : Cd −→ C is a linear functional then the Euler operator in HA(β) corresponding to

its image under HomC(Cd,C)
·A−→ HomC(Cn+1,C) is denoted EL − βL.

Lemma 2.3. For any set F of columns of A contained in a hyperplane that passes

through the origin of Cd but does not contain ak, there is an Euler operator EF − βF

in HA(β) such that the coefficient of θj in EF is zero for all j ∈ F , and equal to 1 for j = k.

If R≥0F is a facet of R≥0A then EF − βF is unique. �

Proof. Choose for any such set F a linear functional L : Qd −→ Q that vanishes on F

while L(ak) = 1. The corresponding Euler operator EL − βL has the desired properties,

and if we define numbers aL,j by

EL =:
∑
j

aL,jxj∂j

then aL,j = L(aj). The uniqueness in the facet case is obvious. �

3 Restricting the Fourier transform

The Fourier transform F (−) is a functor from the category of D-modules on V to the

category of D-modules on the dual space V ∗ = HomC(V ,C). In this section, we bound

the b-function along a coordinate hyperplane of the Fourier transform F (MA(β)) of the

hypergeometric system. This module is called M̌β

A in [10].

The square of the Fourier transform is the involution induced by x �→ −x,
which has no effect on the analytic properties of the modules we study. In particu-

lar, b-functions along coordinate hyperplanes are unaffected by this involution and we

therefore consider F−1(MA(β)) without harm.

We start with introducing some notation.

Notation 3.1. Let {yj} be the coordinates on V ∗ such that F−1(∂j) = yj on the level

of differential operators. We let D̃A be the ring of C-linear differential operators on

ÕA := C[y0, . . . ,yn], generated by {yj, δj}n0 where δj denotes ∂

∂yj
. Then F−1(xj) = −δj. The

subring C[δ1, . . . , δn] of D̃A is denoted R̃A. The isomorphism (−̃) : DA −→ D̃A induced by

∂̃j := yj and x̃j = δj sends OA to R̃A and RA to ÕA.
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Thus, ĨA := F−1(IA) is an ideal of ÕA; the advantage of considering F−1 rather

than F is that ĨA retains the shape of the generators of IA as differences of monomials.

For each j set θ̃j := F−1(θj) = −δjyj. The i-th level V-filtration on D̃A along yt is spanned

by δαyβ with βt − αt ≥ i. �

Before, we get into the technical part, let us show by example an outline of what

is to happen.

Example 3.2. Let A =
(

−1 0 1

1 1 1

)
, a matrix whose associated semigroup ring is a

normal complete intersection. We will estimate the b-function for restriction to the

hyperplane y1 = 0 (corresponding to the middle column) of F−1(MA(β)).

The ideal H̃A(β) := F−1(HA(β)) is generated by

−θ̃0 + θ̃2 − β1, θ̃0 + θ̃1 + θ̃2 − β2, y0y2 − y2
1 . (3.1)

Since y1 ∈ (V1D̃A), y0y2 and hence also θ̃0θ̃2 are in (V1D̃A) + H̃A(β). The strategy of the

example, and of the theorem in this section, is to multiply the element 1 ∈ D̃A by suitable

Euler operators so that the result is a sum of a polynomial p(θ̃1) with an element of

C[θ̃0, θ̃1, θ̃2] · θ̃0θ̃2; this certifies p(θ̃1) to be in H̃A(β) + (V1D̃A).

In the case at hand, the relevant Euler operators are 2θ̃0 + θ̃1 + β1 − β2 and θ̃1 +
2θ̃2−β1−β2. Modulo H̃A(β)we can rewrite (V1D̃A) � 4δ0δ2y2

1 ≡ 4θ̃0θ̃2 ≡ (−θ̃1−β1+β2)(−θ̃1+
β1 + β2). It follows that (s̃ + β1 − β2)(s̃ − β1 − β2) is a multiple of the b-function, where

s̃ = θ̃1 = −y1δ1 −1. This Fourier twist in the argument of the b-function occurs naturally

throughout and we will make our computations in this section in terms of b(s̃).

The expressions θ̃1 + 2θ̃2 and 2θ̃0 + θ̃1 that appear in the Euler operators we used

can be found systematically as follows. Let d1,d2 denote the coordinates on the degree

group Z2 corresponding to E1 and E2; compare the discussion following Notation 2.2.

An element of SA has degree on the facet R≥0a0 if and only if the functional L1(d1,d2) =
d1 + d2 vanishes, and the Euler field that corresponds to this functional in the spirit of

Lemma 2.3 is exactly θ1 +2θ2 −β1 −β2. The elements of SA with degree on the facet R≥0a2

are determined by the vanishing of L2(d1,d2) = d2−d1 and the Euler field corresponding

to this functional is exactly 2θ0 + θ1 + β1 − β2. It is no coincidence that the union of the

kernels of these two functionals is exactly the set of quasi-degrees of SA/∂1 ·SA. The point
is that modulo H̃A(β) all monomials in S̃A with degree in R+A are already in (V1D̃A). The

task is then to deal with those with degree on the boundary through multiplication with

suitable expressions.
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Fig. 1. Restriction of the Fourier transform to y1 = 0.

Figure 1 shows as dots the elements of N A (where those inside A are shaded

at height one); the quasi-degrees of SA/∂1 · SA are on the two indicated lines. Finally,

(β2 − β1)a1 and (β1 + β2)a1 are the intersections of R · a1 with qdegA(SA) + β. �

We now generalize the computation of the example to the general case.

Convention 3.3. For the remainder of this section, we consider restriction to the

hyperplane y0 in order to save overhead (in terms of a further index variable). �

Consider the toric module N = SA/∂0SA, and take a toric filtration

(N) 0 = N0 � N1 � . . . � Nk = N

with composition factors

Nα := Nα/Nα−1,

each isomorphic to some shifted face ring SF ′
α
(bα), F ′

α = τα ∩ A, attached to a face τα of

R≥0A. (We will call such F ′
α also a face.) Lifting the Nα to SA yields an increasing sequence

of A-graded ideals Jα � ∂0 of SA with Nα = Jα/∂0 · SA.
Choose for each composition factor a facet Fα containing F ′

α. None of the faces F ′
α

will contain a0 (as ∂0 is zero on N but not nilpotent on any face ring of a face containing

a0) and hence we can arrange that the corresponding facets do not contain a0 either.

Lemma 2.3 produces for each Nα a facet Fα and corresponding functional LFα

(which we abbreviate to Lα) that vanishes on the facet and evaluates to 1 on a0. The

associated Euler operator in HA(β) is EFα − βFα . Since Lα is zero on all A-columns in Fα

and sinceNα is a shifted quotient of SFα , there is a unique value for Lα on theA-degrees of
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all non-zero A-homogeneous elements of Nα. We denote this value by Lα(Nα). However,

that Lα(Nα) does very much depend on the choice of the facet Fα even though the notation

does not remember this.

Now let Tα be the image in F−1(MA(β)) of F−1(Jα) under the map induced by

ÕA −→ D̃A −→ F−1(MA(β)). The image of T0 = y0ÕA in F−1(MA(β)) is in (V1D̃A) · 1, the
bar denoting cosets in F−1(MA(β)).

Lemma 3.4. In the context of the three preceding parapgraphs, let κα be the constant

Lα(Nα). Then in F−1(MA(β)), modulo the image of (V1D̃A),

(θ̃0 + κα − βα) · (V0D̃A) · Tα = (V0D̃A) · (θ̃0 + κα − βα) · Tα ⊆ (V0D̃A) · Tα−1. �

Proof. Since the commutators [θ̃0, (V0D̃A)] are in (V1D̃A), it suffices to show that (θ̃0 +
κα − βα) · Tα ⊆ (V0D̃A) · Tα−1 modulo F−1(HA(β)).

By definition, Ẽα − βα := F−1(Eα − βα) is zero in F−1(MA(β)). Take a monomial

m̃ ∈ ÕA whose coset lies in Tα \ Tα−1. By Equation (2.3), Ẽα · m̃ = m̃(Ẽα − κα) since F−1(−)

is a homomorphism. Now write Eα = ∑
aα,jθj; as before, we have aα,j = Lα(aj).

Since the coefficient of θ0 in Eα is 1, it follows that in F−1(MA(β)):

θ̃0m̃ = (−Ẽα + θ̃0)m̃+ Ẽαm̃

=
∑
j 
=0

Lα(aj )
=0

aα,jδjyjm̃+ m̃(Ẽα − κα)

=
∑
j 
=0

aj 
∈Fα

aα,jδjyjm̃+ m̃(βα − κα).

Recall that Fα contains F ′
α and that Nα is a ZA-shift of SF ′

α
= RA/I τ

A, whence each yj with

aj 
∈ F ′ annihilatesF−1(Nα). Therefore, each term aα,jδj(yjm) in the last sumof the display

is in (V0DA)Tα−1. It follows that in F−1(MA(β)), we have (θ̃0 + κα − βα)Tα ⊆ (V0D̃A)Tα−1 as

claimed. �

Theorem 3.5. For t = 0, . . . ,n, the number ε ∈ C is a root of the b-function b(s̃) (with

s̃ = θ̃t = −δtyt) of F−1(MA(β)) along yt = 0, only if ε · at is a point of intersection of the

line C · at with the set β − qdegA(N), the quasi-degrees of the toric module N = SA/∂tSA

multiplied by −1 and shifted by β. �
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Proof. Without loss of generality we shall suppose that t = 0 by way of re-indexing.

Wewill show that a divisor of
∏

α(θ̃0+κα −βα) is insideHA(β)+(V1D̃A), in notation

from the previous lemma.

Indeed, it follows from Lemma 3.4 that
∏

α(θ̃0+κα −βα)multiplies 1 ∈ F−1(MA(β))

into (V0D̃A) · y0 · 1 ⊆ (V1D̃A) · 1. Hence the root set of the b-function b(θ̃0) in question is

a subset of {βα − κα}, α running through the indices of the chosen composition series of

N . This set is determined by the composition series (N) and the choices of the facets Fα

for each Nα. Varying over all choices of facets {Fα} for a given chain (N), the root set of

b(θ̃0) is in the intersection ρN of all possible sets {βα − κα}α∈(N).

Since Lα(a0) = 1, the point (βα − κα) · a0 is the intersection of the hyperplane

Lα = βα − κα with the line C · a0. Thus, ρN is inside the intersection of C · a0 with all

arrangements Var
∏

α(Lα −βα +κα). The intersection of the arrangements Var
∏

α(Lα −βα +
κα) is the union of the quasi-degrees of all Nα of the composition chain (N), multiplied

by −1 and shifted by −βα. As N is finitely generated, qdegA(N) = ⋃
α qdegA(Nα). Hence

the root set of b(θ̃0) is contained in the intersection −qdegA(SA/∂0SA) + β with C · a0. �

Remark 3.6. The quantity θ̃t is the more natural argument for the b-function here. The

roots of b(ytδt) are those of b(θ̃t) shifted up by 1 and then multiplied by −1. �

Example 3.7. Let A = (a0,a1,a2) =
(

−1 0 3

1 1 1

)
and β = (

β1
β2

)
. The ring SA is a complete

intersection but not normal.

Consider restriction to y1 = 0 (the middle column). Then N = SA/∂1 · SA has a

toric filtration involving four steps, given by the ideals 0 � ∂3
0 · N � ∂2

0 · N � ∂0 · N � N .

The corresponding A-graded composition factors are SA(−3 · a0)/(∂1, ∂2)SA and {SA(−α ·
a0)/(∂0, ∂1)SA}2α=0. The b-function b(θ̃1) for the inverse Fourier transform is (θ̃1 − β1 − β2)∏2

α=0(θ̃1 − 3β2−β1−4α

3 ).

Explicitly, y4
1 − y3

0y2 ∈ H̃A(β) gives (V1D̃A) � δ30δ2y
3
0y2 = θ̃2θ̃0(θ̃0 − 1)(θ̃0 − 2) which

modulo H̃A(β) equals (−1)4(θ̃1 −β1 −β2)
∏2

α=0(θ̃1 − 3β2−β1−4α

3 ). The relevant Euler operators

are θ1 + 4θ2 − β1 − β2 and 3θ1 + 4θ0 − 3β2 + β1.

Figure 2 shows in the elements of N A (where those inside A are shaded at height

one); the quasi-degrees of N = SA/∂1 · SA are on the indicated four lines. The roots of

b(δ1y1) (which are opposite to the roots of b(θ̃1)) are the intersections of the line C · (01)
with the shift of the indicated lines by −β.

In this example, each composition factor corresponds to a facet and to a compo-

nent of the quasi-degrees of N . One checks that each composition chain must have these
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Fig. 2. Restriction of the Fourier transform to y1 = 0.

four lines as quasi-degrees. However, that composition chains are far from unique and

in general such correspondence will not exist. �

Remark 3.8. The b-function for F−1(MA(β)) along a coordinate hyperplane is generally

not reduced, and its degree may be lower than the length of the shortest toric filtration

for N = SA/∂t · SA would suggest. (Not every component of β − qdegA(N) needs to meet

the line C · at). �

Corollary 3.9. The roots of the b-function b(δtyt) of F−1(MA(β)) along yt = 0 are in the

field Q(β).

Consider F−1(MA(0)); then:

1. the roots of the b-function b(θ̃t) are non-negative rationals;

2. if SA is normal, all roots are in the interval [0, 1);

3. if the interior ideal of SA is contained in ∂t · SA then zero is the only root. �

Proof. The first claim is a consequence of the intersection property in Theorem 3.5: the

defining equations for the quasi-degrees are rational.

Let N = SA/∂tSA. For items 1.-3., we need to study the intersection of qdegA(N)

with C · at, since β = 0 and δtyt = −θ̃t. The quasi-degrees of N are covered by hyper-

planes of the sort Lα = ε where Lα is a rational supporting functional of the facet Fα. In

particular, we can arrange Lα to be zero on Fα, positive on the rest of A, and Lα(at) = 1.

As degA(N) ⊆ degA(SA), ε ≥ 0. Hence Var(Lα − ε) meets C · at in the non-negative rational

multiple εat of at. If SA is normal, degA(SA/∂ASA) is covered by hyperplanes Var(Lα − ε)

that do not meet the cone at + R≥0A. These are precisely the ones for which ε < 1.

If ∂t · SA contains the interior ideal then degA(N), and hence qdegA(N), is inside

the supporting hyperplanes of the cone, which meet C · at at the origin. �
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Remark 3.10. One special case in which case 3 of Corollary 3.9 applies is when SA

is Gorenstein and where further ∂t generates the canonical module. The matrix A =

(a0, . . . ,a3) =

⎛
⎜⎜⎝
1 1 1 1

0 1 3 0

0 0 0 1

⎞
⎟⎟⎠, with the interior ideal being generated by ∂1∂3, provides

an example that case (3) can occur in a Gorenstein situation without the boundary of

NA being saturated. See [14] for a discussion on Cohen–Maculayness of face rings of

Cohen–Macaulay semigroup rings. �

4 b-functions for the hypergeometric system

4.1 Restriction along a hyperplane

We are here interested in the b-function for the hypergeometric moduleMA(β) along the

hyperplane xt = 0. As in the previous section, apart from examples, we actually carry

out all computations for t = 0, in order to have as few variables around as possible. On

the other hand, the natural argument for expressing the b-function will be s = x0∂0.

Notation 4.1. With A = (a0, . . . ,an) and distinguished index 0, we denote A′ :=
(a1, . . . ,an). Via NA′ ⊆ NA we consider SA′ as a subring of SA.

For k ∈ N let JA,0;k ⊆ SA′ be the vector space spanned by the monomials ∂u

with u0 = 0 (so that ∂u ∈ SA′ ) that satisfy ∂k0 · ∂u ∈ SA′ . We denote JA,0;k ⊆ RA′ the

preimage of JA,0;k under the natural surjection RA′ � SA′ . Put JA,0 = ∑
k≥1 JA,0;k and JA,0 =

JA,0/IA′ ⊆ SA′ . �

Each JA,0;k is a monomial ideal of SA′ since ∂k0 (∂v∂u) = ∂v(∂k0 ∂u). Note, however,

that JA,0;k need not be contained in JA,0;k+1. If a0 ∈ R≥0A′ then some power of ∂0 is in SA′

and so JA,0 = SA′ .

Definition 4.2. For a0 ∈ Rd outside R≥0A′, a point a ∈ R≥0A′ is a0-visible if a + λ · a0,

0 < λ � 1 is outside R≥0A′. (The idea behind the choice of language is that the observer

stands at the point of projective space given by the line Ra0.)

By abuse of notation, we say that ∂a is a0-visible if a is. �

Lemma 4.3. Assume that a0 is not in the coneR≥0A′. Then the radical of JA,0 is generated

by the a0-invisible elements of SA′ , and in consequence the quasi-degrees of SA′/JA,0 are

a union of shifted face spans where each face is in its entirety visible from a0. �
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Proof. If ZA/ZA′ has positive rank then all points of NA are a0-visible while JA,0 is

clearly zero, so that in this case there is nothing to prove. We therefore assume that

ZA/ZA′ is finite.

It is immediate that a is a0-visible if and only if any positive integer multiple of

it is. This implies that no power of an a0-visible element ∂a of SA′ can be in the radical

of JA,0 since ∂m·a+ka0 can’t have its degree in the cone of A′.

For the converse, suppose a is not a0-visible, so that there are positive integers

p < q with a + (p/q) · a0 ∈ R≥0A′. Then a high power of ∂q·a+p·a0 is in C[ZA ∩ R≥0A′] and a

suitable power ∂b of that will be in C[ZA′ ∩ R≥0A′] because of the finiteness of ZA/ZA′.

Now let τ be the smallest face of R≥0A′ that contains b; this makes b an interior point

of τ . Since C[τ ∩ ZA′] is a finitely generated C[τ ∩ NA′]-module, some power of ∂b is in

C[τ ∩ NA′] ⊆ SA′ . This shows that some power of ∂q·a times some power of ∂p·a0 is in SA′ ,

establishing the first claim of the lemma.

In every composition chain for SA′/JA,0, each composition factor is an SA′/
√
JA,0-

module. Thus the quasi-degrees of SA′/JA,0 are inside a union of shifted quasi-degrees

of SA′/
√
JA,0 and hence all a0-visible, which implies the second claim. �

Our main theorem in this section is:

Theorem 4.4. The root locus of the b-function b(x0∂0) for restriction of MA(β) along

x0 = 0 is, up to inclusion of non-negative integers, contained in the locus of intersection

(−qdegA′(SA′/JA,0)+β)∩C ·a0. The set of integers needed can be taken to be the integers

0, . . . ,k − 1 such that JA,0 = ∑
1≤i≤k JA,0;i.

In two extreme cases, one can be explicit:

1. if dim SA − 1 = dim SA′ then the b-function is linear with root given by the

intersection of (−qdegA(SA′) + β) ∩ C · a0;

2. if a0 ∈ R≥0A′ then the b-function has integer roots in {0, 1, . . . ,k − 1}, where

k = min{t ∈ N | 0 
= t · a0 ∈ NA′}. �

Proof. We first dispose of the extreme cases. If dim SA − 1 = dim SA′ , then SA is the

polynomial ring SA′ [∂0] and A′ is a facet of A. By Lemma 2.3 there is v = (v1, . . . ,vd) such

that the Euler operator

E − βE =
∑

vi(Ei − βi)
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is in HA(β) and equals θ0 − βE . In particular, the b-function is s− βE . On the other hand:

JA,0 is zero in this case, v = (v1, . . . ,vd) is in the kernel of A′T , and aT0v = 1. Therefore, the

quasi-degrees of SA′/JA,0 form the hyperplane given as the kernel of v and (vTβ)a0 = βEa0

is the intersection of −qdegA(SA′) + β with Ca0.

If a0 ∈ R≥0A′ then Na0 meets NA′ and so ∂k0 = ∂u with u = (0,u1, . . . ,un) ∈ NA′.

In particular, JA,0 = SA′ in this case. Moreover, (x0∂0)(x0∂0 − 1) · · · (x0∂0 − k + 1) = xk0∂
k
0 =

xk0 (∂
k
0 − ∂u) + xk0∂

u ∈ HA(β) + V1(DA) shows the claim made in this case.

Now suppose that A and A′ have equal rank but a0 
∈ R≥0A′. In that case, JA,0 is

a non-trivial ideal of SA′ . We shall use a toric filtration

(N) : 0 = N0 � N1 � . . . � Nt = SA′/JA,0

and let Jα ⊇ JA,0 be the RA′-ideal such that Nα = Jα/JA,0. We will view Jα as subset of DA′

or even DA. In analogy to the previous case, for any ∂u in JA,0;k the b-function along x0

of the coset of ∂u in MA(β) divides s(s − 1) · · · (s − k + 1). Indeed, ∂u ∈ JA,0;k implies that

∂k0 ∂u − ∂v ∈ IA for some v with v0 = 0, and so xk0∂
k
0 ∂u ∈ HA(β) + V1(DA). In particular,

the root set of the b-function of the coset of ∂u in MA′(β) is inside the set of integers

described in the statement of the theorem.

For each composition factor Nα = Nα/Nα−1 choose now a facet τα of A′ and an

element ∂uα of SA′ uα ∈ {0} × Nn such that Nα is a quotient of SA′ · ∂uα and such that

the annihilator of ∂uα in Nα contains the toric ideal I τα
A′ . Then qdegA′(Nα) is contained in

A′ · uα + qdegA′(Sτα ).

Since a0 is not in R≥0A′, Lemma 4.3 shows that the facet τα can be chosen such

that a0 
∈ Q · τα. Indeed, if an entire face of R≥0A′ is visible from a0 then it sits in at least

one facet whose span does not contain a0. By Lemma 2.3 there is an element Eα of the

Euler space of A that does not involve any element of τα, but which has coefficient 1 for

θ0. Notation 2.2 then associates a degree function degEα
(−) to α.

As ∂j · ∂uα ∈ Nα−1 for j 
∈ τα it follows that the difference of (Eα − βα) · ∂uα and

(θ0 − βα) · ∂uα is inside (V0DA)Nα−1. Since Eα − βα is in HA(β), so is ∂uα (Eα − βα) = (Eα −
βα +degEα

(∂uα ))∂uα . Therefore, (θ0 −βα +degEα
(∂uα ))∂uα is in HA(β)+ (V0DA)Nα−1. Then, in

parallel to how Lemma 3.4 was used in the proof of Theorem 3.5, the product

∏
α

(θ0 − βα + degEα
(∂uα ))

multiplies 1 ∈ DA into HA(β)+ (V0DA)JA,0 + (V1DA). Multiplying by xk0∂
k
0 for suitable k one

obtains the desired bound for the b-function as in the second paragraph of the proof.
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It follows as in Theorem 3.5 (with the modification that we have here θ0 rather

than F−1(θ0), which affects signs) that the intersection of the roots of all such bounds

is the intersection of (−qdegA′(SA′/JA,0) + β) with the line C · a0. �

Example 4.5. With A = (a0,a1,a2) =
(

−1 0 3

1 1 1

)
, consider the b-function along x1

of the A-hypergeometric system. The ideal JA,1 is generated by 1 ∈ SA′ = C[N(a0,a2)]
since ∂4

1 is in SA′ . The set of necessary integer roots is then {0, 1, 2, 3}. No other roots

are needed since SA/JA,1 is zero, irrespective of β. Figure 3 shows the situation in this

case.

Restriction to (x2 = 0) behaves differently. As SA′ = C[N(a0,a1)] now, JA,2 = JA,2;1

is generated by ∂3
0 , and the quasi-degrees of SA′/JA,2 are the lines C · (0, 1) + (i, 0) with

i = 0,−1,−2. The intersection of the negative of these three lines, shifted by β, with the

lineC·a2 is a2 ·{(i+β1)/3}i=0,1,2. So the b-function has (at worst) roots {0,β1,β1+1,β1+2}/3.
Figure 4 shows the quasi-degrees of SA/JA,2. �

Fig. 3. The elements of SA � SA′ (black) and SA′ (shaded) for restriction to x1.

Fig. 4. The quasi-degrees of SA/JA,2 form three parallel lines.
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Remark 4.6. Webelieve that both bounds in Theorems 3.5 (as is) and 4.4 (up to integers)

are sharp. �

4.2 Restriction to a generic point

We suppose here that A is homogeneous; in other words, the Euler space contains a

homothety. Let p = (p0, . . . ,pn) be a point of Cn+1. We wish to estimate here the b-

function for restriction of MA(β) to the point −p if p is generic. As a holonomic module

is a connection near any generic point, this restriction yields a vector space isomorphic

to the space of solutions to HA(β) near −p, see [12, Section 5.2].

Definition 4.7. Let θp = (x0 + p0)∂0 + . . . + (xn + pn)∂n and write θ for θp if p = 0. The

b-function for restriction of a principal D-module M = D/I to the point x + p = 0 is

the minimal polynomial bp(s) such that bp(θp) ∈ I + (V1
pD) where Vk

pD is the Kashiwara–

Malgrange V-filtration along Var(x + p):

Vk
pD = C · {(x + p)u∂v | |u| − |v| ≥ k}. �

Remark 4.8.

1. For any pair of manifolds Y ⊆ X and given a D-module M on X one can

define a b-function of restriction for the sectionm ∈ M along Y by a formula

generalizing both Definitions 1.1 and 4.7. Kashiwara proved their existence

for holonomic M .

2. The roots of this b-function here relate to restriction of solution sheaves as

follows. Near a generic point x+p = 0, a D-moduleM is a connection whose

solution space has a basis consisting of a certain number of holomorphic

functions. The germs of these functions form a vector space that can be

identified with the dual of the zeroth homology group of (D/(x + p)D) ⊗L
D M .

Filtering this complex by V •
pD, bp(k) annihilates the k-th graded part of its

homology, compare [7, 8, 16]. In particular, bp(s) carries information on the

starting terms of the solution sheaf of M near x + p = 0. �

The purpose of this section is to bound bp(s) for I = HA(β) and generic p with

the following strategy. We first show that a polynomial b(s) is a multiple of bp(s) if b(θ)
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is in DA(IA,A · E · ∂) where

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

p0 0 · · · 0

0 p1

...
...

. . . 0

0 · · · 0 pn

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

provided that p is component-wise non-zero. The generators of DA(IA,A · E · ∂) are inde-

pendent of x and we next observe that the radical of RA(IA,A · E · ∂) is RA · ∂, provided

that p is generic. Thus, bp(s) will be a factor of any polynomial that annihilates the finite

length module RA/(IA,A ·E · ∂) as long as p is generic. We exhibit a particular such poly-

nomial with all roots integral. In the case of a normal semigroup ring, we show that the

(necessarily integral) roots of bp(s) are in the interval [0,d− 1].
We beginwith pointing out that b(θp) ∈ I+(V1

pD) is equivalent to b(θ) ∈ Ip+(V1
0D),

where Ip is the image of I under the morphism induced by x �→ x − p, ∂ �→ ∂ and

(Vk
0D) is the Kashiwara–Malgrange filtration along the origin. Among the generators

of I = HA(β), only the Euler operators depend on x while (IA)p = IA for any p; one

has (Ei − βi)p = ∑
ai,j(xj − pj)∂j − βi = Ei − βi − ∑

ai,jpj∂j. We hence seek a relation

b(θ) ∈ DA · (IA,E − β − A · E · ∂) + (V1
0DA) with E as in the display above.

Generally, a statement b(θ) ∈ I + (V1
0DA) is equivalent to b(θ) being in the degree

zero part gr0V0(I) of the associated graded object. Note that grV0(DA) is a Weyl algebra

again (although of course the symbol map DA −→ grV0(DA) is not an isomorphism).

Abusing notation, we denote x and ∂ also the symbols in grV0(DA) of the respective

elements of DA. By the previous paragraph then, the graded ideal grV0(HA(β)p) contains

the elements that generate IA (since IA is homogeneous!), as well as the elements A · E · ∂
which arise as the V0-symbols of Ep − β.

We need the following folklore result ) for which we know no explicit reference.

Claim. The RA-ideal generated by IA and A · E · ∂ has, for generic E , radical RA · ∂. �

A sequence of d generic linear forms is of course a system of parameters on SA;

the issue is to show that linear forms of the type A · E · ∂ are sufficiently generic.

Proof. As IA and A · E · ∂ are standard graded, Var(IA,A · E · ∂) is a conical variety. It

thus suffices to show that the ideal Var(IA,A · E · ∂) is of height n+ 1.

The ideal RA[x](IA,A · θ) in the polynomial ring RA[x] defines in the cotangent

bundle Spec(RA[x]) of Cn+1 the union of the conormals to each torus orbit since the
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Euler fields are tangent to the torus and span a space of the correct dimension in each

orbit point. Suppose the claim is false, so that there is a non-zero point y ∈ Var(IA) such

that (the generically chosen vector) p is a conormal vector to the orbit of y. If y is in a

torus orbit Oτ associated to a proper face τ of A then its coordinates corresponding to

A�τ are zero and we can reduce the question to the case where A = τ . It is hence enough

to show that there is p ∈ Cn+1 such that p is not a conormal vector to any smooth point

of Var(IA).

Let X ⊆ Cn+1 be any reduced affine variety and denote X0 its smooth locus. We

define a set C(X) inside Cn+1 by setting

[η ∈ C(X)] ⇐⇒ [∃y ∈ X0, η ∈ (T∗
X0

(Cn+1))y]

where (T∗
X0

(Cn+1))y is the fiber of the conormal bundle at y of the pair X0 ⊆ Cn+1. This

is a constructible, analytically parameterized union of a dim(X)-dimensional family of

vector spaces of dimension n+ 1 − dim(X), which hence might fill Cn+1.

Now suppose that X is a conical variety; then the conormals of y and λy agree

for all λ ∈ C∗. In particular,

C(X) =
⋃

y∈Proj(X)

(T∗
X0

(Cn+1))y ,

where Proj(X) is the associated projective variety. But this is now an analytically param-

eterized union of a (dim(X) − 1)-dimensional family of vector spaces of dimension

n + 1 − dim(X). It follows that most elements of Cn+1 are outside C(X) in this case,

and the claim follows. �

It follows from the Claim that grV0(HA(β)p) contains all monomials in ∂ of a

certain degree k that depends on A. Let E = θ0 + · · · + θn; by hypothesis E − βE ∈ HA(β).

Lemma 4.9. Denote ∂kA the set of all monomials of degree k in ∂0, . . . , ∂n, and DA · ∂kA the

left DA-ideal generated by ∂kA. Then in DA/DA · ∂kA, the identity E(E − 1) . . . (E − k + 1) ∼= 0

holds. �

Proof. This is clear if k = 1. In general, by induction,

E(E − 1) . . . (E − k + 1) ∈ DA · ∂k−1
A · (E − k + 1) = DA · E · ∂k−1

A ⊆ DA · ∂kA. �

Remark 4.10. The homogeneity of X is necessary in the Claim, since otherwise C(X)

does not need to be contained in a hypersurface. Consider, for example, A = (2, 1) in
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which case the union of all tangent lines (nearly) fills the plane, and where the zero

locus of IA and A · E · ∂ contains always at least two points. �

The lemma implies that gr0V0(HA(β)p) contains E(E−1) . . . (E−k+1) if p is generic.

In other words, the b-function for restriction of MA(β) to a generic point divides s(s −
1) . . . (s− k + 1).

In some cases, one can be more explicit about k − 1, the top degree in which

RA/RA(IA,A · E · ∂) is non-zero. Suppose SA is a Cohen–Macaulay ring, then systems of

parameters are regular sequences. In particular, the Hilbert series ofQA := RA/RA(IA,A ·
E · ∂) is that of SA multiplied by (1 − t)d. Suppose in addition, that SA is normal. Since,

we already assume that SA is standard graded, let P be the polytope that forms the

convex hull of the columns of A. The Hilbert series of SA is then of the form
∑∞

m=0 pm · tm,
where pm is the number of lattice points in the dilated polytope m · P. This number of

lattice points is counted by the Erhart polynomial EP(m) of P, a polynomial of degree

d− 1 = dim(P). If one writes the Hilbert series of SA in standard form Q(t)/(1− t)d then

the Hilbert series of QA is just the polynomial Q(t). In particular, the highest degree of

a non-vanishing element of QA is the degree of Q(t).

In order to determine deg(Q(t)) let EP(m) = ed−1md−1 + · · · + e0. Now in

∞∑
m=0

EP(m)tm =
d−1∑
i=0

(
ei ·

∞∑
m=0

mi · tm
)
,

each term
∑∞

m=0m
i ·tm, form > 0, is a polylogarithm Li−i(t) given by (t d

dt )
n( t

1−t ). A simple

calculation shows that Li−i(t) is the quotient of a polynomial of degree i− 1 by (1 − t)i.

Hence the sum in the display is the quotient of a polynomial of degree at most d− 1 by

(1 − t)d. The degree is truly d − 1 as one can check from the differential expression for

Li−i(t).

Therefore, the Hilbert series Q(t) of QA is a polynomial of degree d− 1. We have

proved

Theorem 4.11. Let SA be standard graded. The b-function for restriction of MA(β) to a

generic point x + p = 0 divides s(s− 1) . . . (s− k+ 1) where k denotes the highest degree

in which the quotient SA/SA · (A · E · ∂) is non-zero. If, in addition, SA is normal then one

may take k = d.
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