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Abstract

Many hypergeometric differential systems that arise from a geometric setting can be endowed with
the structure of mixed Hodge modules. We generalize this fundamental result to the tautological
systems associated to homogeneous spaces by giving a functorial construction for them. As an
application, we solve the holonomic rank problem for such tautological systems in full generality.
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1 Introduction

The purpose of this paper is to investigate differential systems that one can naturally associate to group
actions on smooth algebraic varieties, and more specifically to representations of algebraic groups. A
well-known and widely studied case is when the group is an algebraic torus, in which case the corre-
sponding D-modules are known as GKZ-systems (see, e.g., [RSSW21] for an overview on the algebraic
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aspects of this theory). Consider now the following data: a complex algebraic group acting linearly on
a finite-dimensional vector space, an invariant subvariety of this space, and a homomorphism from the
Lie algebra of the group into the complex numbers. To this situation is naturally attached a tautological
system, which is an equivariant D-module on the dual vector space. This construction seems to go back
to [Hot98, Section 4.], but has been considered more recently in a series of papers by Bloch, Huang,
Lian, Song, Yau and Zhu ([LSY13, BHL+14, LY13, HLZ16]). One of their main motivations comes from
mirror symmetry, understood in the classical sense of recovering enumerative geometry information (i.e.,
quantum cohomology) of certain symplectic varieties by period integral computations of their mirror
families (or oscillating integrals in the non-Calabi–Yau case). While the case of complete intersections
inside toric varieties can be considered as settled (at least under sufficient positivity assumptions, cf.
[Giv98, Iri11, RS17] and the respective bibliography trees), it is a longstanding and challenging problem
to establish mirror symmetry, expressed as an equivalence of D-modules (possibly with additional struc-
tures, such as Hodge modules or irregular variants of them) for non-toric varieties. An important class
of examples arise from homogeneous spaces; for a partial list of known results on mirror symmetry in
that context see [Rie08, MR20, LT17]. A common feature of these papers is that the mirror of a Fano
manifold which is a homogeneous space for some group G∨ consists of a Landau–Ginzburg potential,
constructed via Lie theoretic methods from the Langlands dual group G of G∨. When restricted to a
torus inside G, such a potential function can be expressed as a Laurent polynomial. Describing, and
then studying, an appropriate partial compactification of this mirror Laurent polynomial is a major and
central problem in the area; the toric situation is considered for example in [RS17] and, from a very
different point of view, in [CPS22].

Motivated by these results and problems, a question of fundamental importance is, for a given homo-
geneous space X = G/P , to describe the differential system satisfied by periods of families of hyperplane
sections, for an appropriate embedding of X into a projective space. Such a differential system would
be the analogue of a GKZ-D-module, and should yield (by dimensional reduction) the mirror D-module
considered in the papers mentioned above. Our main findings paraphrased in Theorem 1.2 below, give
criteria to determine when tautological systems arise as such D-modules in a setting where we allow G
to be any linear algebraic group, and where the representation will be in the space of sections of some
equivariant line bundle L on X.

Our investigations show that one needs to impose rather delicate conditions on the bundle L and the
parameter Lie algebra homomorphism mentioned above in order to obtain a non-zero tautological system.
If these conditions—which we make explicit—hold true, we show that the corresponding tautological
system has a functorial description, and thus naturally underlies a mixed Hodge module. We determine its
possible weights, and we show how to compute its solution rank at any point. In particular, we determine
its holonomic rank in terms of the dimension of the cohomology of a natural family of (complements of)
hyperplane sections of X. The latter result gives a complete solution for arbitrary line bundles to the
holonomic rank problem raised in [BHL+14]. We also show that in many cases (depending on the value of
the parameter Lie algebra homomorphism), the monodromy representation defined by the smooth part
of the tautological system is irreducible. Besides applications to mirror symmetry, our results should
also lay the foundations for further study of Hodge theory of various differential modules constructed
from representations of algebraic groups, such as Frenkel–Gross connections (see [FG09]) or generalized
Kloosterman D-modules ([HNY13]).

In the remainder of this introduction, we are going to describe our main results in more detail, and
we give an overview on the content of this paper. The main character, the tautological system, is defined
below. In terms of notation, for a vector space V and its dual space W := V ∨, we denote the Fourier–
Laplace transformation functor FLV : Mod(DV ) → Mod(DW ) (see Section 3.1 below for more details
about Fourier–Laplace transformations on arbitrary vector bundles). For now, G′ can be any linear
algebraic group, but in the later parts we will consider a group G acting transitively on a variety X, and
G′ will denote the product C∗ ×G, acting on equivariant line bundles L→ X.

Definition 1.1. Let ρ : G′ → GL(V ) be a finite-dimensional rational representation of an algebraic
group and denote the induced Lie algebra representation by dρ : g′ → gl(V ). Let Y be a G′-invariant
closed subvariety of V . For a Lie algebra homomorphism β : g′ → C, define the left DV -module

τ̂(ρ, Y , β) := DV /(DV I + DV (ZV (ξ)− β′(ξ) | ξ ∈ g′)), (1)

where I ⊆ OV is the vanishing ideal of Y , where ZV (ξ) denotes the vector field on V given by the
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infinitesimal action of g′ (see Lemma 4.3 for a detailed discussion), and where β′(ξ) := trace(dρ(ξ))−β(ξ).
Its Fourier–Laplace transform

τ(ρ, Y , β) := FLV (τ̂(ρ, Y , β)) (2)

is a left DV ∨-module called the tautological system associated to ρ, Y and β. ♢

The next statement summarizes our main results. To state them, assume that X is a smooth projec-
tive variety, and that G is a reductive and connected linear algebraic group that acts transitively on X.
Suppose that L→ X is a G-equivariant line bundle on X, with sheaf of sections L , which we assume to
be very ample. We put G′ := C∗×G, and we define an action of G′ on L by letting the C∗-factor act via
inverse scaling in the fibres of L (see Definition 4.22 for a more precise and more general description).
Setting V := H0(X,L )∨, we obtain a representation G′ → GL(V ). Moreover, since L is very ample, the
linear system |L | yields an embedding g : X ↪→ PV . Let X̂ ⊆ V be the affine cone; this is a G′-invariant
subvariety. Notice that there is an isomorphism L∗ ∼= X̂ \ {0}, where L∗ is the complement of the zero
section of L → X and we write ι : L∗ ↪→ V for the corresponding locally closed embedding obtained by
composing this isomorphism with the embedding X̂ \ {0} ↪→ V . Choose any Lie algebra homomorphism
β : g′ = Ce⊕g→ C with β|g = 0 (this is forced on β if G is semisimple, since then [g, g] = g), i.e., choose
a number β(e) ∈ C.

Theorem 1.2 (Theorem 4.34, Theorem 6.14 and Corollary 6.15). In the above situation, the following
statements hold true.

1. Let β(e) /∈ Z. We have

(a)

τ(ρ, X̂, β) =

 FLV (ι+Oℓ/k
L∗ ) if L ⊗ℓ ∼= ω

⊗(−k)
X and β(e) = ℓ/k,

0 else,

where Oℓ/k
L∗ is a smooth DL∗-module of rank 1 on L∗ (and we denote by C

ℓ/k
L∗ its associated

local system) which underlies a pure complex Hodge module of weight dim(X) + 1.

(b) If τ(ρ, X̂, β) ̸= 0, then it underlies a simple pure complex Hodge module of weight dim(X) +
dim(V ∨). In particular, the local system corresponding to the restriction of τ(ρ, X̂, β) to the
complement of its singular locus (or, phrased differently, its monodromy representation) is
irreducible.

(c) The holonomic rank of τ(ρ, X̂, β) equals

dimCH
dim(X)
c

(
X \ Z(λ),Cℓ/k

λ

)
for a generic λ ∈ V ∨ = H0(X,L ), where Z(λ) is the vanishing locus in X of the section λ,

and where C
ℓ/k
λ is the local system λ∗|X\Z(λ)C

ℓ/k
L∗ .

2. Let β(e) ∈ Z>0. We then have

τ(ρ, X̂, β) = FLV
(
H0ι†OL∗

)
,

which underlies a (rational) mixed Hodge module (i.e. an element in MHM(V ∨)), with weights in
{dim(X) + dim(V ∨), dim(X) + dim(V ∨) + 1}. Its holonomic rank is given by

dimCH
dim(X)(X \ Z(λ),C).

Since the above theorem is meant only as an overview of our results, we ignore the case where
β(e) ∈ Z≤0 here, as it is essentially uninteresting (see Corollary 6.13 for more details). In a similar
spirit, we only mention the holonomic rank here, whereas Corollary 6.15 contains finer results concering
the fibre rank (resp. the solution rank) of the system τ(ρ, X̂, β) at any point. Notice further that the
points 1.(a) and 1.(b) in the above theorem imply in particular that for any given equivariant line bundle
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L that gives a non-zero tautological system, some sufficiently high power of it yields a system with
irreducible monodromy representation.

There are essentially three main ingredients in the proof of the above results. First, one needs to
rewrite the Fourier–Laplace transformation entering in the definition of the tautological system in (2)
as an operation that involves only functors defined in the category of mixed Hodge modules. This
is done using a strategy that already appeared in [Rei14], namely, via the Radon transformation for
algebraic DPn -modules. Due to the possible non-integrality of β however, we need here a variant of this
transformation. This twisted Radon transformation was used in [RS20, Section 5.2], and the relevant
adaptations are discussed in Section 3.

The second main point of our investigations is to study non-vanishing criteria for tautological systems.
As already mentioned, a tautological system, as defined by (2) resp. (1) is often the zero module,
especially when the dimension of the group G is larger than the dimension of the G-variety Y . This
is exactly the situation that we are facing when studying tautological systems defined by homogeneous
spaces. This aspect seems to have been overlooked in the previous studies of tautological systems (e.g. in
[BHL+14, HLZ16]). We therefore need to develop both necessary and sufficient criteria for such systems
to be non-zero. As stated in our main result above, they involve both constraints on the equivariant line
bundle L and on the parameter homomorphism β. We develop these criteria in Sections 4 and 5, using
some facts on modules over a rings of twisted differential operators as well as some standard techniques
from representation theory.

The third important ingredient of our construction is a localization result for the Fourier–Laplace
transform τ̂(ρ, X̂, β) of the tautological system, treated in Section 6.1 and Section 6.2. Although the
problem is similar to the corresponding result in the GKZ-case in [SW09], the techniques are very much
different. It is here where the two cases β(e) ∈ Z resp. β(e) /∈ Z need to be treated separately. While
the latter is a relatively simple argument concerning eigenvalue decomposition for an operator derived
from the Euler vector field on the space V , the former is more delicate. Contrary to the strategy in
[SW09] (using so-called Euler-Koszul homology) we study here various Lie algebroid cohomologies and
prove some vanishing theorems about them.

Outline: Let us give a more specific overview over the various parts of the paper. Notice that the
level of generality is decreasing, in the sense that the results in the earlier sections apply to more general
situations than the main result as stated above. In particular, Section 4 contains results of general
interest about D-modules related to group actions on algebraic varieties.

We start by defining in Section 2 certain Hodge modules on line bundles L→ X over smooth varieties
(or rather on the complement of the zero section L∗). Their underlying D-modules (denoted by Oβ

L∗)
generalize the twisted structure sheaf DC∗/DC∗(∂t · t+β) (which would correspond to the case where the
variety is a point). Then we study their Fourier–Laplace transforms in Section 3, show that they still
underly a mixed Hodge module on the dual bundle and discuss a (complex of) D-module(s) on the space
of global sections of this dual bundle as well as a geometric interpretation of it as twisted cohomology of
hyperplane sections.

In Section 4 we address the question under which hypotheses the tautological system τ(ρ, Y , β) and
its Fourier transform τ̂(ρ, Y , β) are a non-zero DV ∨- resp. DV -module. We first consider a quite general
situation of a smooth algebraic variety Y endowed with the action of an algebraic group G′. From the
vector fields induced by this group action, together with a Lie algebra homomorphism β, we construct
a DY -module N β

Y . Especially important is the case where Y occurs as an orbit in a vector space V
underlying a rational representation ρ : G′ → GL(V ). According to principles outlined above, there is
a tautological system τ(ρ, Y , β) and its Fourier transform τ̂(ρ, Y , β). We relate in Corollary 4.11 the

restriction of τ̂(ρ, Y , β) to Y with the intrinsically defined module N β
Y . We then develop therefore a

framework, based on the formalism of Lie algebroids and their universal enveloping algebras, to study the
vanishing resp. non-vanishing of the module N β

Y . The first main result in this section is Theorem 4.28
which gives a sufficient criterion for τ̂(ρ, Y , β) to be non-zero. Afterwards, this is applied to the more
specific case where the variety Y is the complement of the zero section of the total space of a line bundle
over a variety X equipped with an action by a group G. Then L can, with the choice of a character, be
made into a G′-space, where G′ := C∗×G. The second main result is Theorem 4.34, which not only gives
sufficient and necessary non-vanishing criteria for the system τ̂(ρ, Y , β), but also describes this system,

if it is non-zero, as a direct image of one of the modules Oβ
L∗ introduced earlier in Section 2.
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In Section 5, we derive (via representation theoretic methods) a formula for the complex parameter
value β(e) ∈ C for which the tautological system τ(ρ, X̂, β) is non-zero, at least in the case of a semisimple
group G. We also give a geometric interpretation of this formula and show that it is compatible with
the general criterion of Theorem 4.34.

In Section 6, we apply all the previous results in the case where the variety X is a homogeneous
space, and where the representation ρ is in the dual of the space of sections of an equivariant line bundle
on X. The affine cone of X then takes the role of the G′-invariant space used in the definition of the
tautological system τ(ρ, X̂, β). The main result is then Theorem 6.14, showing that if β is such that
τ(ρ, X̂, β) ̸= 0, then it underlies a pure complex Hodge module for β(e) /∈ Z and a rational mixed Hodge
module for β(e) ∈ Z>0. Moreover, we exhibit in Corollary 6.15 a functorial description of τ(ρ, X̂, β) as
a direct resp. as a proper direct image of a family of (complements of) hyperplane sections of X, and in
consequence solve the holonomic rank problem as stated in [BHL+14] and [HLZ16] in this generalized
situation. A major ingredient necessary for the formulation of this functorial description is to determine
how the Fourier–Laplace transformation of τ(ρ, X̂, β) is related to its restriction to the complement of
the origin. The answer to this question depends crucially on whether β(e) is integral or not; we treat
the two cases separately in Section 6.1 and Section 6.2.

Notations: Throughout, we work over C. By variety, we mean an integral scheme of finite type
over C. When we talk about points on a variety, we mean closed points unless mentioned otherwise.
Our convention for the projective space of a finite-dimensional vector space V is PV := Proj SymV ∨,
i.e., PV parameterizes one-dimensional subspaces of V . For a smooth variety X, we let DX be the
sheaf of algebraic differential operators on X. If not mentioned otherwise, a DX -module is a quasi-
coherent OX -module equipped with a left action by DX . The category of such modules is denoted by
Modqc(DX) and the corresponding bounded derived category by Db

qc(DX). Similarly, let Modh(DX) and

Db
h(DX) be the category of holonomic DX -modules and its corresponding bounded derived category,

respectively. Throughout, for a morphism f : X → Y between smooth varieties over C, we denote by
f+ : Db

qc(DX)→ Db
qc(DY ) and f

+ : Db
qc(DY )→ Db

qc(DX) the functors defined by

f+M := Rf∗(DY←X ⊗L
DX

M ) and f+N := DX→Y ⊗L
f−1DY

f−1N .

Moreover, we denote by
DM := ω∨X ⊗OX

RHomDX
(M ,DX)[dim(X)]

the duality functor from Db
h(DX) to itself; it respects Modh(DX). We then define the functors

f† := D ◦ f+ ◦ D and f† := D ◦ f+ ◦ D.

For any variety X, let MHM(X) be the Abelian category of algebraic (Q-)mixed Hodge modules on X (as
defined in [Sai88, Sai90]) and DbMHM(X) its bounded derived category. For any morphism f : X → Y
the functors f+, f† resp. f

†[dim(Y ) − dim(X)], f+[dim(X) − dim(Y )] on Db
h(DX) resp. Db

h(DY ) lift to
functors

f∗, f! : D
bMHM(X)→ DbMHM(Y ) resp. f∗, f ! : DbMHM(Y )→ DbMHM(X).

We also denote by D the functor on DbMHM(X) which lifts the above defined holonomic duality functor
on Db

h(DX). Any object M ∈ MHM(X) is a tuple M = (M , F•,W•,K) where M ∈ Modh(DX) and
W•M is its weight filtration. We denote by HM(X,w) (or simply HM(X) if w is clear from the context)
the full subcategory of objects such that Grl(M ) = 0 for all l ̸= w; these are the pure Hodge modules of
weight w.

We will need an extension of the notion of (Q-)mixed Hodge modules to the category of complex mixed
Hodge modules. It can be constructed by first defining R-mixed Hodge modules, see [Moc15, Section
13.5]. Then a filtered D-module (M , F•) is said to underly a complex mixed Hodge module if it is a
direct summand of an R-mixed Hodge module ([DS13, Definition 3.2.1.]). We denote the corresponding
Abelian category by MHM(X,C), by DbMHM(X,C) its bounded derived category and by HM(X,C, w)
(or HM(X,C) for short) the category of pure complex Hodge modules of weight w. Many of the known
constructions for R-mixed Hodge modules carry over to the categories MHM(X,C) and HM(X,C) since
they are stable under taking direct summands. The article [DV22, Section 7.1 and Appendix A] contains
a more detailed discussion of complex Hodge modules.
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For any variety X, write aX : X → {pt} for the map to the point. We denote by HCpt the trivial
complex Hodge structure of dimension 1. Then

HCX := a∗X
HCpt[dim(X)],

is a smooth (constant) Hodge module and indeed an object in MHM(X,C). Notice that our notation
differs from the convention in [Sai88, Sai90], where the (Q-)constant Hodge module of rank 1 is denoted
by pQH

X .
We will further need a particular smooth (but non-constant) complex Hodge module on the one-

dimensional torus C∗. Namely, for any β ∈ R, we denote by Oβ
C∗ the DC∗ -module

Oβ
C∗ = DC∗/DC∗(∂tt+ β).

We write HC
β
C∗ for the complex Hodge module with underlying D-module equal to Oβ

C∗ (placed in

cohomological degree zero), and where GrFp O
β
C∗ = 0 for p ̸= 0 and GrWi O

β
C∗ = 0 for i ̸= 1. Its

corresponding perverse sheaf is V[1], where V is the local system of rank 1 on C∗ given by the monodromy

with eigenvalue e2π
√
−1β . Again, in the conventions of [Sai88, Sai90] this object would have been denoted

by pC
H,β
X .

Acknowledgements: We thank Michel Brion for his assistance finding references for the parabolic
version of Borel–Weil and for his explanations about line bundles on homogeneous varieties. We thank
Luis Narváez Macarro for sharing some insights on Lie algebroids with us, especially for his help with
the proof of Lemma 4.16.

2 Mixed Hodge modules on line bundles

As a preliminary result, we state and prove for the reader’s convenience the following well known fact
about the fundamental group of the complement of the zero section of a line bundle.

Proposition 2.1. Let M be a simply connected complex manifold, i.e. π1(M) = {e}. Let π : L → M
be a holomorphic line bundle on M , and write

c1(L) =

r∑
i=1

λiei ∈ H2(M,Z)

for some basis e1, . . . , er of H2(M,Z). Denote by L∗ the complement of the zero section of L. Then
π1(L

∗) = Z/kZ, where k = gcd(λ1, . . . , λr).

Proof. We first notice that the assumption π1(M) = {e} and the universal coefficient theorem for co-
homology implies that H2(M,Z) is free, so the statement of the proposition makes sense. Furthermore,
L∗ →M is a principal C∗-bundle, hence by Milnor’s construction [Mil56] for the case G = C∗ there is a
classifying space B := BG, a universal principal G-bundle p : E := EG→ B and a map φ : M → B so
that L∗ is the pullback of E along φ.

Set I := [0, 1], denote by ∗ the base point of B and by PB := {γ ∈ BI : γ(0) = ∗} the Moore path
space over B. Since B is path connected we have the Moore path space fibration for (B; ∗)

ΩB −→ PB
ρ−→ B ρ(γ) = γ(1).

and analogously for π : PE → E. It can be shown [FHT01, Proposition 2.10] that there is an action of
G×E PE on PE, making π : PE → B a G×E PE-fibration. One gets a diagram of fibrations

E

p
!!

PE

π

��

//oo PB

ρ
||

B

with fibers

G G×E PE
γoo γ′

// ΩB
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where γ and γ′ are weak homotopy equivalences (see loc. cit.) .
Pulling back this diagram along φ one gets

L∗

%%

M ×B PE //oo

��

H(φ)

yy
M

where H(φ) is by definition the homotopy fiber of φ giving a fibration

H(φ) −→ X
φ−→ B.

Notice that L∗ and H(φ) are weakly homotopy equivalent, in particular π1(L
∗) ≃ π1(H(φ)).

Consider the long exact homotopy sequence of the fibration above

π2(X) −→ π2(B) −→ π1(H(φ)) −→ π1(M) = 0

Since π1(M) and π1(B) are trivial we have π2(M) ≃ H2(M,Z) and π2(B) ≃ H2(B,Z) ≃ Z. In
particular, we get the exact sequence

H2(M,Z)free −→ H2(B,Z) −→ π1(M) −→ 0

By duality we get the map Z · θ ≃ H2(B,Z) → H2(M,Z), where θ is a generator of H2(B,Z). Notice
that this map is simply the pullback of cohomology classes along the classifying map M → B. In order
to identify the image of θ, we notice that there is a commutative diagram

B = BC∗

M

::

$$
BU(1)

OO

The map BU(1)→ B is induced by the inclusion U(1)→ C∗ and is a homotopy equivalence, in particular
H∗(B,Z) ≃ H∗(BU(1),Z) ≃ Z[θ] with deg(θ) = 2. The map M → BU(1) is the classifying space of
the sphere bundle of L. By definiton of the Chern classes the pullback of θ along M → BU(1) is
the first Chern class of L. We conclude that, with respect to the dual basis of e1, . . . , er, the map

H2(M,Z)free → H2(B,Z) is given by Zr (λ1,...,λr)−→ Z.

From now on, let X be a smooth complex projective variety and let L→ X an algebraic line bundle.
Unless noted otherwise, we work in the algebraic setting and denote the associated complex manifolds
by Xan, Lan, . . . . In particular, when assuming that π1(X

an) = {e}, we can apply the above proposition
to the case whereM := Xan and to the holomorphic line bundle Lan → Xan. We therefore conclude that
π1(L

∗,an) = Z/kZ. For the remainder of this paper, we will moreover assume that L is a non-trivial line
bundle on X (in particuler, we assume that Pic(X) ̸= 0). This implies in particular that the number k
obtain in the previous proposition is different from zero.

Definition 2.2. Let L→ X be as above, and let k be as in Proposition 2.1. Choose a rational number β
in 1

kZ. Consider the representation π1(L
∗,an)→ C∗ given by sending [1] ∈ Z/kZ ∼= π1(L

∗,an) to the k-th

root of unity e−2πiβ . This defines a local system on L∗,an which we denote by Cβ
L∗ . The corresponding

OL∗ -module with integrable connection (i.e., the corresponding smooth DL∗ -module) is denoted by Oβ
L∗ .

It underlies a complex smooth pure Hodge module on L∗ denoted by HC
β
L∗ . ♢

Notice that it follows from this definition that Oβ
L∗
∼= Oβ′

L∗ for β − β′ ∈ Z.
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Proposition 2.3. Locally, over an open subset U ⊆ X trivializing the line bundle, Oβ
L∗ is isomorphic

to the DC∗×U -module
DC∗/(∂tt+ β)⊠OU .

Proof. Write L∗U for the restriction of L∗ over the trivializing set U ⊆ X. Clearly, U is also a trivializing
open set for L∗, i.e., we have L∗U

∼= C∗ × U . First we note that

π1(L
∗,an
U ) ∼= π1(C

∗,an × Uan) = Z× π1(Uan).

Notice that although one can find trivialising sets of the analytic bundle Lan → Xan which are simply
connected, this is not necessarily true for the set Uan, which is the analytification of a (Zariski open)
trivialising set of the algebraic bundle L→ X.

The group homomorphism π1(L
∗,an
U )→ π1(L

∗,an) induced by the inclusion is given by

π1(L
∗,an
U ) = Z× π1(Uan) −→ Z/kZ = π1(L

∗,an)

(l, γ) 7−→ l

since π1(X
an) = {e}. Now, the restriction by L∗,anU ↪→ L∗,an of Cβ

L∗ is given by the representation
π1(L

∗,an
U ) → C∗ obtained by composing the map π1(L

∗,an
U ) → π1(L

∗,an) with the given representation

π1(L
∗,an)→ C∗ defining Cβ

L∗ . Hence, it sends (1, γ) to e−2πiβ . Therefore, the restriction of Cβ
L∗ to L∗,anU

is isomorphic to Cβ
C∗ ⊠ CUan , and consequently the restriction of the algebraic DL∗ -module Oβ

L∗ to L∗U
is given as stated above.

The following fact about the holonomic dual of Oβ
L∗ is obvious from the definition, since for smooth

objects, the holonomic dual coincides with the dual bundle (with dual connection).

Lemma 2.4. We have DOβ
L∗
∼= O−βL∗ for all β ∈ 1

kZ.

The next step is to consider extensions of the DL∗ -module Oβ
L∗ (resp. of the corresponding Hodge

module HC
β
L∗) over the zero section of L → X. For this, we chose a covering X =

⋃
i∈I Ui by Zariski

open subsets over each of which the bundle L (as well as its restriction L∗) trivializes. We write LUi

and (as above) L∗Ui
for the restriction of the bundle L and that of L∗ over the open set Ui. We denote

by ji : LUi
↪→ L resp. by j̃i : L

∗
Ui
↪→ L∗ be the canonical open embeddings. By shrinking Ui if necessary

(so that it becomes the complement of a divisor in X, and so will be LUi in L, and L∗Ui
in L∗), it will

be convenient to assume that both ji and j̃i are affine maps, in particular, the functors ji,⋆ and j̃i,⋆ are
exact for ⋆ ∈ {+, †}.

Moreover, we write jL : L∗ ↪→ L for the open embedding of the complement of the zero section into
L. We then have the following cartesian diagram of canonical open embeddings:

L∗Ui
L∗

LUi L

j̃i

j̃L
jL

ji

(3)

By construction of the module Oβ
L∗ , for any i ∈ I, we have an isomorphism (depending on the choice

of a trivialisation of L resp. of L∗ over Ui)

ψi : Oβ
C∗ ⊠OUi

∼=−→ j̃+i O
β
L∗ .

Then we have the following statement

Proposition 2.5. 1. The DL-modules jL,+Oβ
L∗ resp. jL,†Oβ

L∗ underly the mixed Hodge modules

jL,∗
HC

β
L∗ resp. jL,!

HC
β
L∗ on L.

8



2. If β /∈ Z, then
jL,∗

HC
β
L∗
∼= jL,!

HC
β
L∗
∼= jL,!∗

HC
β
L∗ ,

which is pure of weight dim(X) + 1.

3. For any β ∈ 1
kZ the following isomorphisms hold in MHM(L)

jL,∗
HC

β
L∗
∼= ji,!∗j

∗
i jL,∗

HC
β
L∗ , and jL,!

HC
β
L∗
∼= ji,!∗j

∗
i jL,!

HC
β
L∗ ,

i.e., these mixed Hodge modules are the minimal extensions of their restrictions to open sets
LUi
⊂ L.

Proof. 1. This is obvious.

2. Notice that we have a well defined morphism

jL,†Oβ
L∗ −→ jL,+Oβ

L∗ .

It suffices to show that if β /∈ Z, then this is an isomorphism in Mod(DL). This is a local statement,
therefore, we can reduce the proof to show that for any i ∈ I, the morphism

j+i jL,†Oβ
L∗ −→ j+i jL,+Oβ

L∗ .

is an isomorphism. Since j+i
∼= j†i , this is equivalent by base change (see diagram (3)) to show that

j̃L,†j̃
+
i O

β
L∗ −→ j̃L,+j̃

+
i O

β
L∗

is an isomorphism. Since j̃+i O
β
L∗ is isomorphic to Oβ

C∗ ⊠ OUi via ψi, and since the functors j̃L,+

resp. j̃L,† correspond to (jC × idUi)+ resp. (jC × idUi)† under this isomorphism, the statement

reduces to the well-known fact that jC,+Oβ
C∗
∼= jC,†Oβ

C∗
∼= jC,†+Oβ

C∗ for β /∈ Z.

3. Again it suffice to show the statement on the level of DL-module, i.e., we need to show that for all
i ∈ I we have

jL,+Oβ
L∗
∼= ji,†+j

+
i jL,+Oβ

L∗ and jL,†Oβ
L∗
∼= ji,†+j

+
i jL,†Oβ

L∗ (4)

Let us prove the first statement concerning the extension jL,+Oβ
L∗ , the proof of the second one is

similar. Fix i ∈ I. Then for any r ∈ I\{i}, we obtain an isomorphism

j+r jL,+Oβ
L∗
∼= j+r ji,†+j

+
i jL,+Oβ

L∗ (5)

by an argument similar to point 2. above. Namely, in order to show (5), it suffices by base
change (notice that all functors involved are exact, so the base change property also holds for the
intermediate extension) to prove

jr,L,+Oβ
L∗

Ur

∼= jir,†+j
+
irjr,L,+Oβ

L∗
Ur

where now jr,L : L∗Ur
↪→ LUr and where jir : LUi∩Ur ↪→ LUr . However, since both L∗ and L

trivializes over Ur and since the module Oβ
L∗ resp. the extension jL,+Oβ

L∗ is isomorphic to the

exterior product Oβ
C∗ ⊠ OUr

resp. to jC,+Oβ
C∗ ⊠ OUr

(and since obviously OUr
is the minimal

extension of OUi∩Ur ), we obtain the existence of the isomorphism (5). Now it is a tedious but
straightforward check that these isomorphisms are compatible on intersections of trivializing open
sets, hence they yield the desired isomorphism

jL,+Oβ
L∗
∼= ji,†+j

+
i jL,+Oβ

L∗ .
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3 Fourier–Laplace transformation

The purpose of this section is twofold: First we recall a few basic properties of general Fourier-Laplace
transformations on (not necessarily trivial) vector bundles. We then apply these constructions to study
a (complex of) D-module(s) that generically computes cohomology groups of hyperplane sections of
projective varieties. These results are used later in Section 6 for the special case of homogeneous spaces
and their corresponding tautological systems.

3.1 Fourier–Laplace transformation on vector bundles

Definition 3.1. Given a vector bundle E → X on a smooth variety X, we consider the canonical
projections p1 : E ×X E∨ → E and p2 : E ×X E∨ → E∨. Let α : E ×X E∨ → C×X → C be the natural
pairing and denote K := α+(DC/DC(∂t + 1)). The Fourier–Laplace transformation is the functor
FLE

X : Db
qc(DE)→ Db

qc(DE∨) given as

FLE
X(M ) := p2,+(p

+
1 M ⊗L

OE×E∨ K ).

♢

We first note a well-known fact concerning the behavior of the Fourier-Laplace transformation with
respect to the holonomic duality functor.

Lemma 3.2. We have

c+ ◦ FLE
X ◦D ∼= D ◦ FLE

X

as functors from Db
c(DE) → Db

c(DE∨), where c : E∨ → E∨ is the automorphism given by fiberwise
negation.

Proof. This can be shown exactly as in [Dai00, Corollaire 2.2.2.1., 4)] (see especially loc.cit, Proposi-
tion 2.2.3.2)

We proceed with the following two basic properties that follow rather directly from the projection
formula and base change.

Lemma 3.3. Let φ : E → F be a morphism of vector bundles over X and denote by φ∨ : F∨ → E∨ the
induced morphism of dual vector bundles. Then for ⋆ ∈ {+, †} we have

FLF
X ◦φ⋆

∼= φ∨,⋆ ◦ FLE
X

as functors Db
c(DE)→ Db

c(DF∨).

Proof. We only show the case ⋆ = + from which the case ⋆ = † follows directly using Lemma 3.2. We
denote K E := (αE)+(DC/DC(∂t+1)) and K F := (αF )+(DC/DC(∂t+1)), where αE : E×XE

∨ → C and
αF : F ×X F

∨ → C are the natural pairings. Moreover, denote by q1 : E×X F
∨ → E and q2 : E×X F

∨ →
F∨ the projections onto the first and second factor. Consider the commutative diagram

E F

E ×X E∨ E ×X F∨ F ×X F∨

E∨ F∨ ,

φ

pE
1

pE
2

q1

q2

idE ×φ∨

φ×idF∨

pF
2

pF
1

φ∨
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whose squares are cartesian. For every M ∈ Db
c(DE), we have:

FLF
X(φ+M )

= pF2,+(p
F,+
1 φ+M ⊗L

OF×F∨ K F )

∼= pF2,+
(
(φ× idF∨)+q

+
1 M ⊗L

OF×F∨ K F
)

(base change)

∼= pF2,+(φ× idF∨)+
(
q+1 M ⊗L

OE×F∨ (φ× idF∨)+K F
)

(projection formula)

∼= q2,+
(
q+1 M ⊗L

OE×F∨ (φ× idF∨)+K F
)

(q2 = pF2 ◦ (φ× idF∨))

∼= q2,+
(
q+1 M ⊗L

OE×F∨ (idE ×φ∨)+K E
)

(αE ◦ (idE ×φ∨) = αF ◦ (φ× idF∨))

∼= q2,+
(
(idE ×φ∨)+pE,+

1 M ⊗L
OE×F∨ (idE ×φ∨)+K E

)
(q1 = pE1 ◦ (idE ×φ∨))

∼= φ∨+p
E,+
2 (pE,+

1 M ⊗L
OE×E∨ K E) (base change)

= φ∨+ FLE
X(M ).

Lemma 3.4. Consider a cartesian square

E F

X Y,

g

×

where the vertical arrows are vector bundles over smooth varieties. Denote by g∨ : E∨ → F∨ the
corresponding morphism of dual vector bundles. Then for ⋆ = {+, †} we have

FLF
Y ◦g⋆ ∼= g∨⋆ ◦ FL

E
X and FLE

X ◦g⋆ ∼= g∨,⋆ ◦ FLF
Y

as functors Db
c(DE)→ Db

c(DF∨) and Db
c(DF )→ Db

c(DE∨), respectively.

Proof. Again we restrict to the case ⋆ = +, and invoke duality to deduce the corresponding statements
for ⋆ = †. We use notations as in the proof of Lemma 3.3. Note that we have the following commutative
diagram with cartesian squares:

E E ×X E∨ E∨

F F ×Y F∨ F∨.

g

pE
1 pE

2

g×g∨ g∨

pF
1 pF

2

For every M ∈ Db
qc(DE), we have:

FLF
Y (g+M )

= pF2,+(p
F,+
1 g+M ⊗L

OF×YF∨ K F )

∼= pF2,+
(
(g × g∨)+pE,+

1 M ⊗L
OF×YF∨ K F

)
(base change)

∼= pF2,+(g × g∨)+
(
pE,+
1 M ⊗L

OE×XE∨ (g × g∨)+K F
)

(projection formula)

∼= g∨+p
E
2,+

(
pE,+
1 M ⊗L

OE×XE∨ (g × g∨)+K F
)

(pF2 ◦ (g × g∨) = g∨ ◦ pE2 )

∼= g∨+p
E
2,+(p

E,+
1 M ⊗L

OE×XE∨ K E) (αE = αF ◦ (g × g∨))

= g∨+ FLE
X(M ).
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Similarly, for N ∈ Db
qc(DF ), we get:

FLE
X(g+N )

= pE2,+(p
E,+
1 g+N ⊗L

OE×XE∨ K E)

∼= pE2,+
(
(g × g∨)+pF,+

1 N ⊗L
OE×XE∨ K E

)
(g ◦ pE1 = pF1 ◦ (g × g∨))

∼= pE2,+
(
(g × g∨)+pF,+

1 N ⊗L
OE×XE∨ (g × g∨)+K F

)
(αE = αF ◦ (g × g∨))

∼= g∨,+pF2,+
(
pF,+
1 N ⊗L

OF×YF∨ K F
)

(base change)

= g∨,+ FLF
Y (N ).

In the following, we wish to relate Fourier–Laplace transforms on vector bundles with classical
Fourier–Laplace transforms on a finite-dimensional vector space (which is the special case of a vec-
tor bundle over a point). For this, we consider the following situation: Let π : E → X be a vector bundle
on a smooth variety and denote by E its sheaf of sections, i.e., E = Tot(E) := SpecOX

Sym• E∨. Let
W ⊆ Γ(X, E) be a non-zero finite-dimensional vector space of global sections of E and let V := W∨ be
its dual vector space. There are natural bundle morphisms ev : W × X → E and ev∨ : E∨ → V × X,
where E∨ denotes the dual vector bundle to E.

Proposition 3.5. Let W be a finite-dimensional space of global sections of a vector bundle E → X on
a smooth variety. Let V denote its dual vector space. If aV : V ×X → V and aW : W ×X →W denote
the projections onto the first factors, we have

FLV (aV,+ev
∨
+M ) ∼= aW,+ev

+ FLE∨

X (M )

for all M ∈ Db
qc(DE∨).

Proof. The claim follows from Lemma 3.3 and Lemma 3.4 considering the diagram

E∨ V ×X V

X Spec C.

ev∨ aV

×

3.2 Fourier–Laplace transform of extensions of Oβ
L∗

We now determine the Fourier–Laplace transform of the DL∗ -modules Oβ
L∗ defined in Section 2, where

L∗ is the complement of the zero section of a line bundle π : L → X. Recall that the definition of Oβ
L∗

depends on the choice of a line bundle F with L = F⊗k for some k ∈ Z satisfying kβ ∈ Z.
Note that the dual line bundle π∨ : L∨ → X is the (−k)-th tensor power F⊗(−k). In what follows, we

will consider the DL∨,∗ -module O−βL∨,∗ whose definition we always base on the choice of F as a (−k)-th
root of L∨ (or, equivalently, based on F∨ as a k-th root of L∨).

We denote by jL : L
∗ ↪→ L and jL∨ : L∨,∗ ↪→ L∨ the open embeddings from the complements of the

zero section into L and L∨, respectively.

Proposition 3.6. Let β ∈ C with kβ ∈ Z. Then

FLL
X(jL,+Oβ

L∗) ∼= jL∨,†O−βL∨,∗ .

Proof. We know (see (4)) that

jL,+Oβ
L∗
∼= ji,†+j

+
i jL,+Oβ

L∗ and jL,†Oβ
L∗
∼= ji,†+j

+
i jL,†Oβ

L∗
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(Recall diagram (3) for the maps involved in these isomorphisms). Moreover, we have trivially

Oβ
L∗
∼= j̃i,†+j̃

+
i O

β
L∗ ,

since Oβ
L∗ is a smooth DL∗ -module. By base change, this implies that

jL,+j̃i,†+j̃
+
i O

β
L∗
∼= ji,†+j̃+j̃

+
i O

β
L∗

and
jL,†j̃i,†+j̃

+
i O

β
L∗
∼= ji,†+j̃†j̃

+
i O

β
L∗ .

Similar statements hold for O−βL∨,∗ and its extensions to DL∨,∗ -modules (they involve the canonical open
embeddings j∨i : L∨Ui

↪→ L∨ on the dual bundle).

By Lemma 3.4, we have FLL
X ◦ji,∗ = j∨i,∗ ◦ FL

LUi

Ui
for ∗ ∈ {+, †, }. Moreover, since all of the four

functors FLL
X , ji,∗, j

∨
i,∗,FL

LUi

Ui
are exact, we also obtain FLL

X ◦ji,†+ = j∨i,†+ ◦ FL
LUi

Ui
. It follows that

FLL
X(jL,+Oβ

L∗) ∼= j∨i,†+ FLL
X j+i jL,+Oβ

L∗

∼= j∨i,†+ FL
LUi

Ui

(
jC,+Oβ

C∗ ⊠OUi

)
∼= j∨i,†+

(
FLC(jC,+Oβ

C∗)⊠OUi

)
∼= j∨i,†+

(
jC,†O−βC∗ ⊠OUi

)
∼= j∨i,†+

(
j∨,+i jL∨,†O−βL∨,∗

)
∼= jL∨,†O−βL∨,∗ .

Corollary 3.7. Let k ∈ Z and let β ∈ R with kβ ∈ Z. Then the Fourier–Laplace transform on L of
the DL-module jL,+Oβ

L∗ can be equipped with the structure of a complex mixed Hodge module which
is pure of weight dim(X) + 1 if β /∈ Z.

Proof. We have just seen in the previous Proposition 3.6 that

FLL
X(jL,+Oβ

L∗) ∼= jL∨,†O−βL∨,∗ .

On the other hand, we know by Proposition 2.5 that jL∨,†O−βL∨,∗ underlies the the object

jL∨,!
HC
−β
L∨,∗ ∈ MHM(L∨,C),

and that it is pure if β /∈ Z.

3.3 Twisted cohomology of hyperplane sections

In this subsection, we describe a complex of D-modules that generically computes certain twisted co-
homologies of hyperplane sections of our variety X (resp. the complement of those). We show that it
underlies an object in the derived category of mixed Hodge modules. In the more specific situation stud-
ied later in Section 6, when X arises a homogeneous space, these D-modules will appear as tautological
systems.

With the notations from before, we fix a non-zero finite-dimensional subspace W of Γ(X,L ). Let
V :=W∨ denote its dual vector space. The linear system W on X defines a rational map g : X 99K PV .
The natural evaluation morphism

ev : W ×X → L, (6)
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is a morphism of vector bundles over X and it induces a dual bundle morphism

ev∨ : L∨ → V ×X.

The following diagram commutes:

L∨ V ×X

X PV ×X

ev∨

π∨

g×idX

If the linear system W is base-point-free, then g : X → PV is a morphism and ev∨ restricts to a
morphism

ẽv∨ : L∨,∗ → (V \ {0})×X
of complements of zero sections. In this case, we have the following commutative diagram:

L∨ V ×X V

L∨,∗ (V \ {0})×X V \ {0}

X PV ×X PV

ev∨ aV

×
ẽv∨

jL∨ j×idX

×

j

g×idX

If, moreover, the linear systemW separates points and tangent directions (in particular, L is very ample
in this case), then g : X → PV is a locally closed embedding. In this case, L∨,∗ is isomorphic to X̂ \ {0},
where X̂ ⊆ V is the affine cone over g(X) ⊆ PV , and L∨ is the blow-up of X̂ in the origin: L∨ ∼= Bl{0} X̂.
We denote further by Y := ev−1(0) the inverse image of the zero section of L, by U := (W × X)\Y
its complement, and we write aY : Y → W resp. aU : U → W for the restrictions of the projection
aW : W ×X →W to Y resp. to U .

Proposition 3.8. Assume L to be very ample and let W ⊆ H0(X,L ) be a finite-dimensional linear
system defining a locally closed embedding g : X ↪→ PV , where V := W∨. Let ι̂ : L∨,∗ ∼= X̂ \ {0} ↪→ V
denote the locally closed embedding of the punctured affine cone over X into V . Then we have the
following.

1. For all β ∈ C with kβ ∈ Z, the complexes of DW -modules

FLV (ι̂+Oβ
L∨,∗) and FLV (ι̂†O−βL∨,∗)

underly elements of DbMHM(W,C) that we denote by H,∗Mβ
L and by H,!M−βL , respectively. We

have
H,∗Mβ

L
∼= H,∗Mβ+ℓ

L and H,!M−βL
∼= H,!M−β+ℓ

L

for any ℓ ∈ Z.

2. For β ∈ Z, the complexes FLV (ι̂+Oβ
L∨,∗) and FLV (ι̂†O−βL∨,∗) underly elements in MHM(W ) that

we denote unambiguously by H,∗ML resp. by H,!ML.

3. For β /∈ Z, we have an isomorphism H,∗Mβ
L
∼= H,!Mβ

L. If X is projective, then the cohomology

modules Hi(H,∗Mβ
L) are pure Hodge modules of weight dim(X) + dim(W ) + i.

4. Let β ∈ Z and assume again that X is projective. Then for any k ∈ Z, there exists morphisms in
the abelian category of mixed Hodge modules

Hk(aY,∗
HCY) −→ Hk

(
H,∗ML

)
resp. Hk

(
H,!ML

)
−→ Hk(aY,∗

HCY)(−1)

with constant kernel of weight k + dimX + dimW − 1 resp. k + dimX + dimW and constant
cokernel of weight k + dimX + dimW resp. k + dimX + dimW + 1. In particular there are the
following weight estimates for H,∗ML and H,!ML:

GrWℓ (Hk(H,∗ML)) = 0 for ℓ ̸= k + dimW + dimX − 1, k + dimW + dimX,

GrWℓ (Hk(H,!ML)) = 0 for ℓ ̸= k + dimW + dimX, k + dimW + dimX + 1.
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Proof. 1. We start by showing the statement for H,∗Mβ
L. For this purpose, we combine Proposition 3.5

and Proposition 3.6 to get a purely functorial description of this complex of DW -modules not
involving Fourier–Laplace transforms, namely

FLV (ι̂+Oβ
L∨,∗)

∼= FLV (aV,+ev
∨
+jL∨,+Oβ

L∨,∗)
∼= aW,+ev

+ FLL∨

X (jL∨,+Oβ
L∨,∗) Proposition 3.5

∼= aW,+ev
+jL,†O−βL∗ Proposition 3.6

∼= aW,+ev
†jL,†O−βL∗ ev is smooth

= aW,+ ev
†[dimL− dim(W ×X)] jL,†O−βL∗ [dimW − 1],

(7)

where the last equality is due to the obvious dimension count dim(L) = dim(X) + 1.

Since O−βL∗ underlies the complex pure Hodge module HC
−β
L∗ (see Definition 2.2), we obtain that

H,∗Mβ
L := aW,∗ev

∗jL,!
HC
−β
L∗ [dimW − 1] ∈ DbMHM(W,C). (8)

Define
H,!M−βL :=

(
DH,∗Mβ

L

)
(dim(W ×X))

where D is the duality functor in MHM(W,C) as recalled in the introduction. Clearly, the complex

of DW -modules that underlies H,!M−βL is then DFLV (ι̂+Oβ
L∨,∗), where this time D is the holonomic

duality functor on DW -modules.

On the spaces V and L∨,∗, we consider the isomorphisms cV and cL∨,∗ given by multiplication by
−1 (in all variables for cV and fibrewise for cL∨,∗). Then since the Fourier transformation FLV

and the holonomic duality commute up to the action of cV (i.e., since D ◦FLV ∼= FLV ◦D ◦ c+V ), we
obtain the following isomorphisms in Db(DW ) for the complex of DW -modules underlying H,!M−βL :

DFLV (ι̂+Oβ
L∨,∗) ≃ FLV D c+V (ι̂+O

β
L∨,∗)

≃ FLV D(ι̂+c+L∨,∗Oβ
L∨,∗) since cV ◦ ι̂ = ι̂ ◦ cL∨,∗ by definition of ι̂

≃ FLV D(ι̂+Oβ
L∨,∗) ∃ isomorphism c+L∨,∗Oβ

L∨,∗ ∼= Oβ
L∨,∗

≃ FLV (ι̂†DOβ
L∨,∗) D ι̂+ ∼= ι̂† D

≃ FLV (ι̂†O−βL∨,∗) DOβ
L∨,∗ ∼= O−βL∨,∗ by Lemma 2.4.

This shows that the underlying complex of DW -modules of H,!M−βL is FLV (ι̂†O−βL∨,∗), as claimed.

The second statement follows directly from the fact that Oβ
L∗
∼= Oβ′

L∗ for β − β′ ∈ Z.

2. For β ∈ Z, we have O−βL∗ = OL∗ , which underlies an element in MHM(L∗), and by the above
argument we get that H,∗ML,

H,!ML ∈ DbMHM(W ).

3. Recall from (7) above that

FLV (ι̂+O−βL∨,∗) ∼= aW,+ev
†jL,†Oβ

L∗ .

Applying the holonomic duality functor yields

DFLV (ι̂+O−βL∨,∗) ∼= aW,+ev
†jL,+DOβ

L∗ ,∼= aW,+ev
†jL,+O−βL∗ ,

since aW,† ∼= aW,+ (aW is proper) and since ev+ ∼= ev† (ev is smooth). Now if β /∈ Z, by using

Proposition 2.5, we have jL,+O−βL∗
∼= jL,†O−βL∗ , and thus we obtain

DFLV (ι̂+O−βL∨,∗) ∼= aW,+ev
†jL,†O−βL∗

∼= FLV (ι̂+Oβ
L∨,∗),

from which we deduce an isomorphism

H,!Mβ
L
∼= H,∗Mβ

L
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in DbMHM(W,C).

Moreover, under the assumption that β /∈ Z, we have seen in Corollary 3.7 that jL,!
HC
−β
L∗ is pure

(of weight dim(X) + 1). Since the morphism ev is smooth, and since aW is projective here, the
second assertion thus follows from [Sai88, Théorème 1].

4. Recall that we denoted by jL : L
∗ → L the inclusion of the complements of the zero section and

denote by iL : X → L the inclusion of the zero section of L. There is the following adjunction
triangle

jL,! j
−1
L

HCL −→ HCL −→ iL,!i
−1
L

HCL
+1−→

Since i−1L
HCL =H CX [1] we get the triangle

iL,!
HCX −→ jL,! j

−1
L

HCL −→ HCL
+1−→ (9)

Since the map jL is affine, the functor jL,! from MHM(L∗) to MHM(L) is exact and H0(jL!
HCL∗)

is the only non-zero cohomology. Therefore we get the short exact sequence

0 −→ iL,!
HCX −→ H0(jL,!

HCL∗) −→ HCL −→ 0

We have the following diagram with cartesian squares

Y
iY //

��

X ×W

ev

��

Uoo

��
X // L L∗oo

Applying the exact functor ev∗[dimW − 1] to the short exact sequence (9) we get the short exact
sequence

0 −→ iY,!
HCY −→ H0(ev∗jL,!

HCL∗ [dimW − 1]) −→ HCX×W −→ 0 (10)

Notice that iY,!
HCY is pure of weight dimX + dimW − 1 and that HCX×W is pure of weight

dimX + dimW . We apply the functor aW,∗ to (10) and get

Hk−1(aW,∗
HCX×W )→ Hk(aY,∗

HCY)→ Hk
(
H,∗ML

)
→ Hk(aW,∗

HCX×W ). (11)

Since Hk(aY,∗
HCY) is pure of weight k+dimX+dimW−1 and the constant mixed Hodge module

Hk(aHW,∗CX×W ) is pure of weight k + dimX + dimW we conclude that

GrWℓ (Hk(H,∗ML)) = 0 for ℓ ̸= k + dimW + dimX − 1, k + dimW + dimX.

and there exists a map Hk(aY,∗
HCY)→ Hk

(
H,∗ML

)
with constant kernel and cokernel. Applying

D to the sequence (11) and doing a Tate-twist by −(dimX ×W ) we get for m = −k

Hm(aW,∗
HCX×W )→ Hm

(
H,!ML

)
→ Hm(aY,∗

HCY)(−1)→ Hm+1(aW,∗
HCX×W )

Since Hk(aY,∗
HCY) is pure of weight k + dimX + dimW + 1 we conclude that

GrWℓ (Hm(H,!ML)) = 0 for ℓ ̸= m+ dimW + dimX,m+ dimW + dimX + 1.

and there exists a map Hk
(
H,!ML

)
→ Hk(aY,∗

HCY)(−1) with constant kernel and cokernel.

We will discuss next a natural geometric interpretation of the complex of mixed Hodge modules
H,∗Mβ

L resp. H,!M−βL .
For this purpose, fix some value λ ∈W . Then, by definition, we have λ ∈ Γ(X,L ), and interpreting

this global section as a morphism λ : X ↪→ L, we can consider the image Lλ := im(λ) ⊆ L. We identify
the zero section of the projection π : L ↠ X inside L with X and recall that L∗ := L \X denotes the
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complement of the zero section. We denote by Hλ := Lλ ∩X ⊆ X the zero locus of the section λ (which
was called Z(λ) in Theorem 1.2) and by Uλ := X \Hλ its complement in X.

Notice that the full family of zero loci of sections of L is given by Y := ev−1(0) → W , (s, λ) 7→ λ,
i.e. the fibre of this map over a point λ ∈ W is exactly the hypersurface Hλ. Similarly, we have
U = (W × X) \ Y =

⋃
λ∈W Uλ, the evaluation morphism ev from Formula (6) then restricts to a

morphism
ev|U : U −→ L∗.

Recall that we defined the constant (complex) pure Hodge module HC
β
L∗ in Definition 2.2. We then put

HC
β
U := ev∗|U

HC
β
L∗ [dimW − 1] ∈ HM(U ,C).

Moreover, for λ ∈W as above, consider the restriction λ|Uλ
: Uλ ↪→ L∗. We put, for β ∈ Q,

HC
β
λ := λ∗|Uλ

HC
β
L∗ [−1] ∈ HM(Uλ,C)

Proposition 3.9. We continue with the setup of Proposition 3.8 and additionally assume that X is
projective. Let β ∈ C with kβ ∈ Z. Then the following statements hold true:

1. Let aU : U → W be the restriction of the projection aW : W × X → W . Then we have an
isomorphisms

aU,!
HC
−β
U
∼= H,∗Mβ

L and aU,∗
HC

β
U (2 dimW + 2dimX) ∼= H,!M−βL

in DbMHM(W,C).

2. For any m ∈ N, and any λ ∈W we have isomorphisms of (complex) mixed Hodge structures

Hm(i∗λ
H,∗Mβ

L[−dimW ]) ∼= H
dim(X)+m
c (Uλ,

HC
−β
λ ),

Hm(i!λ
H,!M−βL [dimW ]) ∼= Hdim(X)+m(Uλ,

HC
β
λ)(dimW + 2dimX).

Proof. In the course of the proof, we will make repeatedly use of the base change property for algebraic
mixed Hodge modules, as stated in [Sai90, Section 4.4.3].

1. This is almost immediate by considering the following cartesian diagram

U L∗

W X ×W L

ev|U

jU
aU

jL

ev
aW

which yields (using (8))

H,∗Mβ
L

(∗)∼= aW,! ev
∗ jL,!

HC
−β
L∗ [dimW − 1]

(∗∗)∼= aW,! jU,! ev
∗
|U

HC
−β
L∗ [dimW − 1]

= aU,! ev
∗
|U

HC
−β
L∗ [dimW − 1]

= aU,!
HC
−β
U ,

where the isomorphism (∗) holds because aW is proper (since X is projective) and ev is smooth,
and where (∗∗) follows by base change. We then apply the duality functor D on DbMHM(W,C)

on both sides of aU,!
HC
−β
U
∼= H,∗Mβ

L to obtain that aU,∗
HC

β
U (2 dimX + 2dimW ) ∼= H,!M−βL .

17



2. Write
H,∗N β

L := ev∗jL,!
HC
−β
L∗ [dimW − 1] ∈ MHM(X ×W,C),

then by the proof of the previous Proposition 3.8 we have that

H,∗Mβ
L
∼= aW,!

H,∗N β
L .

Now consider the cartesian diagram

X × {λ} X ×W

{λ} W.

iXλ

aX aW

iλ

Then

i∗λ
H,∗Mβ

L
∼= i∗λaW,!

H,∗N β
L

∼= aX! i
X,∗
λ

H,∗N β
L = aX! iX,∗

λ ev∗jL,!
HC
−β
L∗ [dimW − 1] (base change)

∼= aX! λ∗jL,!
HC
−β
L∗ [dimW − 1] (ev ◦ iXλ = λ)

∼= aX∗ λ
∗jL,!

HC
−β
L∗ [dimW − 1] (aX proper).

Now we consider the diagram

X L

Uλ L∗,

λ

j

λ|Uλ

jL

then base change yields λ∗ jL,!
∼= j! λ

∗
|Uλ

, so we get an isomorphism of objects in DbMHM({λ},C)
(which we identify with the derived category of complex mixed Hodge structures).

i∗λ
H,∗Mβ

L
∼= aX∗ j! λ

∗
|Uλ

HC
−β
L∗ [dimW − 1] ∼= aX∗ j!

HC
−β
λ [dimW ]

∼= aX! j!
HC
−β
λ [dimW ] = aUλ

!
HC
−β
λ [dimW ],

where aUλ : Uλ ↠ {λ} and where we have used aX∗ = aX! since X is projective. We apply Hm(−)
to both sides to obtain an isomorphism of complex mixed Hodge structures

Hm(i∗λ
H,∗Mβ

L[−dimW ]) ∼= Hm(aUλ

!
HC
−β
λ ) = Hm+dimX

c (Uλ,
HC
−β
λ ).

recall that we use the convention HCX := a∗X
HCpt[dim(X)].

For the second statement, we apply the duality functor D in DbMHM(W,C) to the isomorphism

i∗λ
H,∗Mβ

L
∼= aUλ

!
HC
−β
λ [dimW ] just proved, which gives

i!λ
H,!M−βL

∼= aUλ
∗

HC
β
λ(dimW + 2dimX)[−dimW ],

and then by taking cohomology again we find that

Hm(i!λ
H,!M−βL [dimW ]) ∼= Hdim(X)+m(Uλ,

HC
β
λ)(dimW + 2dimX),

as required.

In the subsequent sections of this article, we will investigate to which extent tautological systems for
homogeneous spaces X are examples of the D-modules underlying HMβ

L for particular line bundles L
and values β.
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4 Non-vanishing criteria for tautological systems

The definition of a tautological system does not always describe a non-zero D-module. In fact, for
tautological systems arising from projective homogeneous spaces, this fails in a striking way, as we will
see below in Section 4.4. In that setup, tautological systems τ(ρ, Y , β) will only be non-zero for very
particular representations ρ and specific choices of β. In those cases however, tautological systems are
particularly interesting. The aim of this section is therefore to develop general criteria for vanishing resp.
non-vanishing of tautological systems.

4.1 D-modules from group actions

Here we consider the action of a linear algebraic group G′ on a variety Y . The main case of interest
(which will be discussed from Section 4.4 on) arises when we are given an action of a reductive linear
algebraic group G on a smooth variety X, and an equivariant line bundle L on X. Denoting by G′ the
group G× C∗, we let G′ act on Y , which we take to be the total space L (or the complement L∗ of the
zero section) of L . For the purpose of clarity, it is however useful to first treat the case of an arbitrary
variety Y admitting a G′-action, where G′ is any linear algebraic group. This is the point of view that
we are going to adapt in Sections 4.1 to 4.3.

We begin by recalling some facts concerning group actions on smooth varieties. They are mainly
included for the reader’s convenience and in order to fix notations. The proofs are rather elementary
and will therefore be omitted.

Lemma 4.1. Let G′ be an algebraic group acting on a smooth variety Y . Then there is a unique Lie
algebra homomorphism

ZY : g′ → Γ(Y,ΘY )

associating to every element ξ of the Lie algebra g′ of G′ a vector field ZY (ξ) on Y with the following
point-wise description: At a point y ∈ Y , the tangent vector of the vector field ZY (ξ) is given by dφy(ξ),
where φy : G′ → Y , g 7→ g−1 · y, and ξ is understood as a tangent vector to G′ at the point 1 ∈ G′.

In the complex analytic category, the vector field ZY (ξ) may be defined as the derivation

ZY (ξ)(f) =
d

dt
f
(
exp(tξ)−1 · (−)

)
|t=0

.

If the G′-variety Y considered is clear from the context, we will drop the index and just write Z(ξ). In
the literature, the vector field Z(ξ) is sometimes denoted by Lξ, see e.g. [Hot98, II.2].

Example 4.2. Consider the action of G′ on itself by left-multiplication (i.e., Y = G′). Then −ZG′(ξ)
is the right-invariant vector field associated to ξ ∈ g′. If, for example, G′ = (C∗)d and ξ ∈ Cd = g′, then

Z(C∗)d(ξ) = −
d∑

i=1

ξi ti∂ti ,

where (t1, . . . , td) are the standard coordinates on (C∗)d. ♢

For group actions on finite-dimensional vector spaces, we also have the following description:

Lemma 4.3. Let ρ : G′ → GL(V ) be a finite-dimensional rational representation of an algebraic group
G′. The induced left action of G′ on C[V ] =

⊕
d≥0 Sym

d V ∨ describes a morphism of algebraic groups
G′ → GLC(C[V ]) whose induced Lie algebra homomorphism g′ → EndC(C[V ]) makes the following
diagram commute:

g′ EndC(C[V ])

Der(C[V ]) .

ZV
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Explicitly, if we fix coordinates x1, . . . , xn on V and consider the associated Lie algebra representation
dρ : g′ → gl(V ) = gl(n,C) = Cn×n, then

ZV (ξ) = −
n∑

i,j=1

dρ(ξ)ji xi∂xj

for all ξ ∈ Lie(G′).

Example 4.4. Let G′ = (C∗)d be a d-dimensional torus acting linearly on an n-dimensional vector space
V . We identify V with Cn by picking a basis that diagonalizes the action, i.e., t = (t1, . . . , td) ∈ (C∗)d

acts on x = (x1, . . . , xn) ∈ Cn by

t · x = (tα1x1, . . . , t
αnxn) with α1, . . . , αn ∈ Zd.

If ξ ∈ Zd = Lie
(
(C∗)d

)
is the i-th standard basis vector ei, we get the vector field

ZV (ei) = −
n∑

j=1

(αj)ixj∂xj

on V . These are the vector fields showing up in GKZ-systems associated to the given torus action. ♢

Example 4.5. Let X ⊆ Pk be the rational normal curve of degree k, i.e., the image of

P1 |O(k)|−−−−→ Pk, [x0 : x1] 7→
[(

k
i

)
xk−i0 xi1 | i = 0, . . . , k

]
,

and let Y := X̂ \ {0} be the punctured affine cone over X in V := Ck+1. The group SL(2) acts on
V = H0(P1,O(k))∨ = Symk(C2), the k-th symmetric power of the standard SL(2)-representation, and
we extend this to an action of G′ := SL(2) × C∗ by letting the C∗-factor act by scaling on V . The Lie
algebra g′ is generated by E12, E21, E11 − E22 ∈ sl(2) and the generator e of Lie(C∗) ∼= C. The induced
vector fields on V are

ZV (E12) = −
k∑

i=1

i zi∂zi−1
,

ZV (E11 − E22) = −
k∑

i=0

(k − 2i) zi∂zi ,

ZV (E21) = −
k∑

i=1

(k − i+ 1) zi−1∂zi ,

ZV (e) = −
k∑

i=0

zi∂zi ,

where z0, . . . , zk denote the coordinates on V = Ck+1. Note that the minus signs appear because we
differentiate the contragredient action on the coordinate ring of V .

On the G′-invariant subset Y , these vector fields restrict to the vector fields ZY (ξ). In local charts,
these can be expressed as follows: We may cover Y by the two open subsets U0 and U1 given by the
non-vanishing of xk0 ∈ V ∨ and xk1 ∈ V ∨, respectively. Identifying

U0
∼= C∗ × C, λ · (1, ks,

(
k
2

)
s2, . . . , ksk−1, sk) ←[ (λ, s),

U1
∼= C∗ × C, µ · (tk, ktk−1,

(
k
2

)
tk−2, . . . , kt, 1) ← [ (µ, t),

the vector fields induced from the G′-action on Y are:

ZY (E12)|U0
= −ksλ∂λ + s2∂s,

ZY (E21)|U0
= −∂s,

ZY (E11 − E22)|U0
= −kλ∂λ + 2s∂s,

ZY (e)|U0
= −λ∂λ,

ZY (E12)|U1
= −∂t,

ZY (E21)|U1
= −ktµ∂µ + t2∂t,

ZY (E11 − E22)|U1
= kµ∂µ − 2t∂t,

ZY (e)|U1
= −µ∂µ.

Note that these local expressions coincide on the intersection U0∩U1 under the gluing C
∗×C∗

∼=−→ C∗×C∗,
(λ, s) 7→ (λsk, s−1) = (µ, t). ♢

Using the vector fields defined Lemma 4.1, we introduce the following D-modules:
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Definition 4.6. Let G′ be an algebraic group acting on a smooth variety Y and let β : g′ → C be a Lie
algebra homomorphism. Then we define the left DY -module

N β
Y := ω∨Y ⊗OY

DY /(ZY (ξ)− β(ξ) | ξ ∈ g′)DY .

♢

Remark 4.7. In case that the action of G′ on Y is transitive, it is easy to see that if N β
Y ̸= 0, then it is

a smooth DY -module of rank 1 (namely, the vector fields ZY (ξ), when ξ runs through g′, generate the
tangent bundle of Y ). As already mentioned, our main case of interest is when Y = L∗ for some C∗×G-
equivariant line bundle L on a homogeneous G-space X. Then G′ := C∗ ×G clearly acts transitively on
L∗, and therefore N β

Y corresponds to a rank 1 local system on L∗. By the discussion in Section 2, we

then know that N β
Y must be one of the DL∗ -modules introduced in Definition 2.2. Under the hypothesis

that G is semisimple, one can also show that then N β
Y
∼= Oβ

L∗ . However, one of the main points in this

section is that very often, the modules N β
Y (and, if Y is an orbit in a representation space V of G′, the

tautological system τ(ρ, Y , β)) is zero, and then it is certainly not isomorphic to Oβ
L∗ . We will develop

below criteria that guarantee the non-vanishing of the modules N β
Y resp. of tautological systems (see

Proposition 4.33 and Theorem 4.34 below). ♢

Example 4.8. Let G′ = T = (C∗)d be a d-dimensional torus acting on itself. We identify Lie algebra
homomorphisms β : Cd = g′ → C with vectors β ∈ Cd. Then

N β
T = ω∨T ⊗OT

DT /(−ti∂ti − βi | i = 1, . . . , d)DT
∼= DT /DT (∂titi − βi | i = 1, . . . , d).

This DT -module was called O−βT in [RS20]. ♢

Example 4.9. We reconsider the action of G′ = SL(2) × C∗ on the punctured affine cone Y over
the rational normal curve of degree k from example 4.5 and use the notations from before. Every Lie
algebra homomorphism β : g′ → C is given by β|sl(2) ≡ 0 and β(e) = β0 ∈ C. By the computations in

example 4.5, in the local chart U0
∼= C∗ × C ⊆ Y , the DY -module N β

Y can be expressed as

(N β
Y )|U0

∼= ω∨U0
⊗OU0

DU0
/(−ksλ∂λ + s2∂s, −∂s, −kλ∂λ + 2s∂s, −λ∂λ − β0)DU0

∼= DU0/DU0(ks∂λλ− ∂ss2, ∂s, k∂λλ− 2∂ss, ∂λλ− β0)
∼= DU0

/DU0
(ksλ∂λ − s2∂s + (k − 2)s, ∂s, kλ∂λ − 2s∂s + (k − 2), λ∂λ + 1− β0)

∼= DU0
/DU0

(∂s, λ∂λ + 1− β0, k(−1 + β0) + (k − 2))

∼=

{
DC∗/DC∗(∂λλ− β0)⊠ DC/DC · ∂s if β0 = 2/k,

0 otherwise

and similarly for the other local chart U1 of Y . In particular, for one specific value for β(e), we obtain
a non-zero DY -module that will be of interest to us.

Note that in contrast, if we define the cyclic left module

Ñ β
Y := DY /DY (ZY (ξ)− β(ξ) | ξ ∈ g′),

then, in this example, we get

(Ñ β
Y )|U0

∼= DU0
/DU0

(−ksλ∂λ + s2∂s, −∂s, −kλ∂λ + 2s∂s, −λ∂λ − β0)

∼= DU0
/DU0

(∂s, λ∂λ + β0, kβ0) ∼=

{
OU0 if β0 = 0,

0 otherwise.

For k = 2, we have N
(β0=1)

Y = Ñ
(β0=0)

Y , but in general they do not agree with each other. In fact, one

can show that although N β
Y is locally a cyclic left DY -module, it does not admit a global description as

a cyclic left DY -module for k ≥ 3. ♢

The main reason we wish to consider the DY -module N β
Y defined via the right-left-transformation

of a cyclic right-module is the following behavior under equivariant closed embeddings:
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Proposition 4.10. Let G′ be an algebraic group and let i : Y1 ↪→ Y2 be a G′-equivariant closed em-
bedding between smooth G′-varieties Y1, Y2. Then, for all Lie algebra homomorphisms β : g′ → C, we
have

i+N β
Y1

∼= ω∨Y2
⊗OY2

DY2
/
(
I + (ZY2

(ξ)− β(ξ) | ξ ∈ g′)
)
DY2

where I ⊆ OY2
is the ideal sheaf of Y1 in Y2.

Proof. Since i : Y1 ↪→ Y2 is a closed embedding, the functor i∗ is exact and the transfer module DY1→Y2

is a flat DY1 -module. Therefore, the direct image of N β
Y1

under i is given by

i+N β
Y1

∼= ω∨Y2
⊗OY2

i∗
(
DY1/(ZY1(ξ)− β(ξ) | ξ ∈ g′)DY1 ⊗DY1

DY1→Y2

)
.

Hence, the claim is that

DY1
/(ZY1

(ξ)− β(ξ) | ξ ∈ g′)DY1
⊗DY1

DY1→Y2

!∼= i−1
(
DY2

/((ZY2
(ξ)− β(ξ) | ξ ∈ g′)DY2

+ IDY2
)
)
.

as right i−1DY2 -modules. Note that DY1→Y2
∼= i−1(DY2/IDY2) as right i−1DY2 -modules, since i is a

closed embedding. Under the left DY1
-module structure on DY1→Y2

, vector fields on Y1 act via the
push-forward homomorphism

di : ΘY1
→ i∗ΘY2

= OY1
⊗i−1OY2

i−1ΘY2
∼= i−1(OY2

/I ⊗OY2
ΘY2

).

We note that the push-forward of the vector field ZY1(ξ) on Y1 agrees with the restriction of the
vector field ZY2

(ξ) on Y2 to Y1, i.e., di(ZY1
(ξ)) = 1⊗ ZY2

(ξ). Indeed, this follows from the construction
of ZY1

(ξ) and ZY2
(ξ), using the commutativity of

G′ × Y1 Y1

G′ × Y2 Y2,

φ1

idG′ ×i i

φ2

where φ1, φ2 are the morphisms given by the G′-actions.
This shows that ZY1

(ξ) ∈ Der(OY1
) acts on the right i−1DY2

-module DY1→Y2
∼= i−1(DY2

/IDY2
) by

left-multiplication with ZY2(ξ). This implies the claimed description as a cyclic right i−1DY2 -module of
DY1/(ZY1(ξ)− β(ξ) | ξ)DY1 ⊗DY1

DY1→Y2 , concluding the proof.

The D-modules in Proposition 4.10 look similar to the β-twistedly equivariant D-modules considered
in [Hot98, II.2], yet they are different: Instead of considering a cyclic left module obtained by quotienting
out a G′-stable ideal and the vector fields induced by the group action (twisted with β), we instead
consider the right module constructed in the same way and apply a right-left transformation to obtain a
left D-module. The behavior under direct images of closed embeddings in Proposition 4.10 is the reason
why for our purposes we work with the definition via right modules in Definition 4.6.

We next consider the situation where Y is an orbit of a rational representation ρ of our group G′ in
a given vector space V . Recall from our basic Definition 1.1 that under this hypothesis, we can define,
for any Lie algebra homomorphism β : g′ → C, the DV -module τ̂(ρ, Y , β) (as well as its Fourier-Laplace
transform τ(ρ, Y , β) which was called tautological system in Definition 1.1). The next result tells us about

a technically easy but imporant relation of this τ̂(ρ, Y , β) to the DY -module N β
Y considered above.

Corollary 4.11. Let ρ : G′ → GL(V ) be a finite-dimensional rational representation of an algebraic
group and let β : g′ → C be a Lie algebra homomorphism. Let Y ⊆ V be a G′-orbit, let Y be its closure
and let ∂Y := Y \ Y . Then

j+τ̂(ρ, Y , β) ∼= i+N β
Y ,

where Y = Y \ ∂Y i
↪−→ U := V \ ∂Y

j
↪−→ V .

In particular, if τ̂(ρ, Y , β) is localized at ∂Y (meaning j+j
+τ̂(ρ, Y , β) ∼= τ̂(ρ, Y , β)), then it is the

direct image of N β
Y under the locally closed embedding Y ↪→ V .
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Proof. We apply Proposition 4.10 to the G′-spaces Y1 := Y , Y2 := V \ ∂Y and the closed embedding
i : Y1 ↪→ Y2 to see that

i+N β
Y
∼= ω∨U ⊗OU

DU/
(
I + {ZU (ξ)− β(ξ)}

)
DU .

Choosing coordinates x1, . . . , xn on V , we may by Lemma 4.3 express the vector field ZU (ξ) as the
derivation −

∑n
i,j=1 dρ(ξ)ji xi∂xj . The right-left transformation ω∨U ⊗OU

(·) is then explicitly given by
transposing operators:

i+N β
Y
∼= DU/DU

(
I + {ZU (ξ)

T − β(ξ)}
)
.

An explicit computation of the transposed vector fields yields:

ZV (ξ)
T =

n∑
i,j=1

dρ(ξ)ji ∂xjxi =

n∑
i,j=1

dρ(ξ)ji xi∂xj +

n∑
i=1

dρ(ξ)ii = −ZV (ξ) + trace(dρ(ξ)),

hence (using ZV (ξ)|U = ZU (ξ)) we have that i+N β
Y
∼= j+τ̂(ρ, Y , β).

Example 4.12 (GKZ-systems). Consider a torus representation ρ : (C∗)n → GL(n,C) that is given
by ρ(t1, . . . , td) = diag(tα1 , . . . , tαn) with αi ∈ Zd. Let Y ⊆ Cn be the orbit closure of the point
(1, . . . , 1) ∈ Cn; this is a (not necessarily normal) affine toric variety. The DCn -module τ̂(ρ, Y , β)

is the Fourier–Laplace transform M̂A(−β) of the GKZ-system MA(−β) (see, e.g. [RSSW21] for an
overview and for the notation used here), where A is the d × n-matrix whose i-th column is αi and
β : Lie

(
(C∗)d

)
= Zd → C is identified with the vector (β(ei))i=1,...,d ∈ Cd.

In this case, Corollary 4.11 applied to Y = Y ∩ (C∗)n says that M̂A(−β) is the direct image of

N β
(C∗)d

= O−β
(C∗)d

under the locally closed embedding (C∗)d ∼= Y ↪→ Cn, whenever MA(−β) is localized

at the intersection of Y with the union of coordinate hyperplanes of Cn. This was observed in [SW09],
where an explicit combinatorial characterization of the localization property in terms of A and β was
proved using Euler–Koszul complexes. ♢

Example 4.13. Reconsider from example 4.5 the punctured affine cone Y over the rational normal
curve of degree k. This may be identified with the complement of the zero section in the line bundle

L = Tot(OP1(k)) → P1. The calculation in example 4.9 shows that N β
Y = O−β(e)L∗ if β(e) = 2/k and

N β
Y = 0 otherwise. Corollary 4.11 shows that the restriction of the FL-transformed tautological system

τ̂(ρ, Y , β) = DV /DV ·
{(

k

i2

)(
k

j2

)
zi1zj1 −

(
k

i1

)(
k

j1

)
zi2zj2 | i1 + j1 = i2 + j2

}
∪

{
−

k∑
i=1

i zi∂zi−1
, −

k∑
i=1

(k − i+ 1) zi−1∂zi ,

−
k∑

i=0

(k − 2i) zi∂zi , −
k∑

i=0

zi∂zi − (k + 1) + β(e)

}

to the complement of the origin in V is

τ̂(ρ, Y , β)|V \{0} =

{
i+O−β(e)L∗ if β(e) = 2/k,

0 otherwise.

♢

4.2 D-modules from equivariant line bundles

The non-vanishing of tautological systems is by Corollary 4.11 closely tied to the non-vanishing of the
D-modules N β

Y . The aim of this section is to study criteria for N β
Y to be (non-)zero. In order to do so,

we introduce another construction of D-modules on a G′-variety Y , which also depends on the choice
of an equivariant line bundle on Y . It will turn out (this is the main result of Section 4.3 below) that

the modules N β
Y can be expressed in exactly this way. For such D-modules defined by equivariant line
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bundles, it is possible to develop non-vanishing criteria using an interpretation via modules over rings of
twisted differential operators (called A -modules below).

We continue with the setup of the previous section. Let G′ be a connected linear algebraic group
acting on a smooth connected algebraic variety Y . Denote by g′ the Lie algebra of G′ and by U(g′)
its universal enveloping algebra. Every element ξ of g′ induces a vector field ZY (ξ) ∈ Γ(Y,ΘY ) by
Lemma 4.1, and this map extends to a homomorphism of OY -modules

ZY : OY ⊗C g′ → ΘY

via ZY (f ⊗ ξ) = fZY (ξ) for f ∈ OY , ξ ∈ g′.

Definition 4.14. Given the G′-variety Y , we define

AY := OY ⊗C U(g′),

which has the structure of an associative C-algebra with multiplication given by

(f1 ⊗ ξ1) · (f2 ⊗ ξ2) = f1f2 ⊗ ξ1ξ2 + f1ZY (ξ1)(f2)⊗ ξ2.

♢

The OY -module homomorphism ZY extends to a homomorphism of associative C-algebras

Z̃Y : AY → DY .

For any left AY -moduleM, we may consider the left DY -module obtained by scalar extension

DY ⊗AY
M.

On the other hand, note that the homomorphism Z̃Y induces a forgetful functor from the category of
left DY -modules to the category of left AY -modules.

The associative algebra AY is the universal enveloping algebra of the Lie algebroid (OY ⊗C g′, ZY ) on
Y , see [BB93, 1.8.4.Example]. This is the reason why, in many ways, modules over AY behave similarly
to modules over the algebra DY (which can be viewed as the universal enveloping algebra of the Lie
algebroid ΘY ). For example, the tensor product of two left AY -modules over OY is again naturally a
left AY -module, while the tensor product of a left and a right AY -module over OY naturally becomes a
right AY -module. Applying basic results on modules over universal enveloping algebras of Lie algebroids
[CMNM05, Appendice] to Z̃Y : AY → DY , we obtain the following elementary properties:

Lemma 4.15 ([CMNM05, Théorème A.6 and Corollaire A.2]). Let M be a left AY -module. Let N
(resp. N ′) be a left (resp. right) DY -module. Then there are natural isomorphisms

1. DY ⊗AY
(M⊗OY

N ) ∼= (DY ⊗AY
M)⊗OY

N as left DY -modules,

2. (M⊗OY
N ′)⊗AY

DY
∼= (DY ⊗AY

M)⊗OY
N ′ as right DY -modules.

Here, on the left hand sides, N and N ′ are considered as AY -modules via Z̃Y : AY → DY .

From now on, we will only be interested in the case that G′ acts transitively on Y . In this case, the
OY -module homomorphism ZY : OY ⊗Cg′ → ΘY is surjective, hence the same is true for Z̃Y : AY → DY ,
so

DY
∼= AY / ker Z̃Y .

We observe that the kernel of Z̃Y (which is a two-sided ideal in AY ) is generated as a left ideal in
AY by the kernel of ZY :

Lemma 4.16. If G′ acts transitively on Y , then

ker
(
Z̃Y : AY → DY

)
= AY · ker

(
ZY : OY ⊗ g′ → ΘY

)
.
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Proof. We check the claim locally. For this, let p ∈ Y be an arbitrary point and let U ⊆ Y be an open
neighborhood of p admitting a local coordinate system (x1, . . . , xn), so that ΘU =

⊕n
i=1OU∂xi

. We
claim that by further shrinking the open set U , we may choose an appropriate OU -basis θ1, . . . , θm of
the free OU -module OU ⊗ g′ such that the surjective homomorphism of OU -modules

(ZY )|U : OU ⊗ g′ → ΘU

is given by

θi 7→

{
∂xi

if i ≤ n
0 if i > n.

Indeed, (ZY )|U is a surjective homomorphism of free OU -modules of finite rank and we may represent
it by an n ×m-matrix A (with m ≥ n) by choosing any OU -basis of OU ⊗ g′. By surjectivity of ZY ,
some n× n-minor of A does not vanish at the point p. After permuting the chosen OU -basis of OU ⊗ g′,
we may assume that the non-vanishing set V ⊆ U of the minor given by the first n columns is an open
neighborhood of p. Writing

A = (A1 |A2) with A1 ∈ Mat(n× n,OU ), A2 ∈ Mat(n× (m− n),OU ),

we have A1 ∈ GL(n,OV ). Changing the OU -basis on (OU ⊗ g′)|V = OV ⊗ g′ corresponds to right-
multiplying A with an element of GL(m,OV ). Then

(
A1 A2

)
·
(
A−11 −A−11 A2

0 Idm−n

)
=
(
Idn 0

)
shows that a choice of θ1, . . . , θm as desired exists.

Now, every section of AU can be expressed as a sum of elements of the form fθa1
1 θa2

2 . . . θam
m with

f ∈ OU , a1, . . . , am ∈ N, each of which gets mapped under (Z̃Y )|U to

fθa1
1 θa2

2 . . . θam
m 7→

{
f∂a1

x1
∂a2
x2
. . . ∂an

xn
if an+1 = · · · = am = 0,

0 otherwise.

From this, we can see that every section of AU getting mapped to zero under (Z̃Y )|U is an element of

AU · {θn+1, . . . , θm} = AU · ker((ZY )|U ).

Lemma 4.16 is in fact a special case of a more general fact about Lie algebroids: If φ : F1 ↠ F2 is a
surjective homomorphism of two locally free Lie algebroids of finite rank on the same variety Y , then the
kernel of the induced homomorphism of universal enveloping algebras φ̃ : U(F1) ↠ U(F2) is generated
by kerφ as a left U(F1)-ideal. A similar proof to the above carries over.

Equivariant line bundles as AY -modules: If E → Y is a G′-equivariant line bundle and we denote
by E its sheaf of sections, then for every open subset U ⊆ Y , the Lie algebra g′ acts on Γ(U,E ). This
makes E a left AY -module. We will be particularly interested in the left DY -module DY ⊗AY

E arising
from this.

Remark 4.17. If U ⊆ Y is an open subset not invariant under G′, then G′ does not act on U . Yet,
we still get ZU : OU ⊗C g′ → ΘU , allowing us to define AU . While E|U is not G′-equivariant, it still
is a left AU -module, and we may consider DU ⊗AU

E|U . This suggests a generalized viewpoint, where
we replace the G′-action on Y by a g′-action on OY , and replace G′-equivariant line bundles with line
bundles carrying a left AY -module structure. ♢

Next, we examine when equivariant line bundles give rise to non-zero D-modules.

Proposition 4.18. Assume G′ acts transitively on Y . Let E be a G′-equivariant line bundle on Y .
Then the following are equivalent:

1. DY ⊗AY
E ̸= 0,
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2. E → DY ⊗AY
E is an isomorphism of left AY -modules,

3. E⊗k → DY ⊗AY
E⊗k is an isomorphism of left AY -modules for some k ∈ Z>0,

4. E⊗k → DY ⊗AY
E⊗k is an isomorphism of left AY -modules for all k ∈ Z>0.

Proof. First, we show that the first two items are equivalent: By transitivity of the group action,
Z̃Y : AY → DY is surjective, hence the natural homomorphism of AY -modules E → DY ⊗AY

E is
also surjective. Since the support of DY ⊗AY

E is a G′-invariant subset of Y , by transitivity we must
either have DY ⊗AY

E = 0 or Supp(DY ⊗AY
E ) = Y . Since E is a line bundle on Y , the only quotient

of the OY -module E with support equal to Y is E itself. This shows 1 ⇔ 2.
The implication 4 ⇒ 3 is trivial. To show the implication 2 ⇒ 4, we assume for contradiction

that there is some k ≥ 2 for which the claim does not hold and assume k to be minimal. Applying
Lemma 4.15.1 toM := E⊗(k−1) and N := DY ⊗AY

E gives:

DY ⊗AY
E⊗k ∼= (DY ⊗AY

E⊗(k−1))⊗OY
(DY ⊗AY

E ) ∼= E⊗(k−1) ⊗OY
E = E⊗k

as left AY -modules (by minimality of k). This is a contradiction to the choice of k.
It remains to show the implication 3 ⇒ 2. Consider the two-sided ideal

I := ker
(
Z̃Y : AY ↠ DY

)
of AY . Note that the natural homomorphism E → DY ⊗AY

E of left AY -modules is an isomorphism if
and only if I annihilates E . Using Lemma 4.16, it suffices to prove that E is annihilated by ker(ZY ).
Let s ∈ Γ(U,E ) be a non-zero local section of E and let P ∈ Γ(U, ker(ZY )) ⊆ OU ⊗ g′. By assumption
3, we have E⊗k ∼= DY ⊗AY

E⊗k as left AY -modules for some k ≥ 1, meaning that E⊗k is annihilated by
I. In particular, the local section sk ∈ Γ(U,E⊗k) is annihilated by P , so P · sk = 0. On the other hand,
we have

P · sk = ksk−1(P · s).

Since Y is an irreducible variety, we deduce that P · s = 0. This concludes the proof.

Corollary 4.19. Assume G′ acts transitively on Y . Let E be a torsion element of the equivariant

Picard group PicG
′
(Y ), i.e., E⊗k ∼= OY as equivariant line bundles for some k ∈ Z>0. Then the natural

homomorphism

E → DY ⊗AY
E

of left AY -modules is an isomorphism.

Proof. By Proposition 4.18, it suffices to consider the case that E = OY as equivariant line bundles. The
Lie algebra g′ acts trivially on the 1-section of OY , hence

E ∼= AY /AY (ξ | ξ ∈ g′)

as left AY -modules. Tensoring with DY over AY gives

DY ⊗AY
E ∼= DY /DY (ZY (ξ) | ξ ∈ g′) = DY /DY ΘY

∼= OY
∼= E .

Here, we use that the vector fields ZY (ξ) for ξ ∈ g′ generate the tangent bundle ΘY , as the action of G′

on Y is transitive.

Remark 4.20. Note from the proof above that the equivalences of 2., 3. and 4. in Proposition 4.18
hold more generally for any line bundle E with a left AY -module structure, not necessarily arising from
G′-equivariant structure on E . The equivalence with 1. moreover holds whenever DY ⊗AY

E is known
to have G′-invariant support (as will be the case for example if we know that some positive power of E
underlies a G′-equivariant line bundle, or if E is a twist of a G′-equivariant line bundle by a Lie algebra
homomorphism as we will consider in Section 4.3). ♢
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Corollary 4.19 shows in particular that DY ⊗AY
E ̸= 0 for G′-equivariant torsion line bundles. Under

certain assumptions on Y , the converse is also true:

Proposition 4.21. Let G′ act transitively on Y and assume that there is an open cover Y =
⋃

i∈I Ui

such that for each i ∈ I, there is a subgroup Ni of G acting freely and transitively on Ui. Then

DY ⊗AY
E ̸= 0 ⇔ E ∼= OY as G′-equivariant line bundles.

We remark that under the assumptions on Y in Proposition 4.21, there are no non-trivial equivariant
torsion line bundles on Y .

Proof. One implication is given by Corollary 4.19. For the converse, we assume that DY ⊗AY
E ̸= 0.

Since E is G′-equivariant, the support of this DY -module is a non-empty G′-invariant subset of Y , hence
(by transitivity of the group action)

Supp(DY ⊗AY
E ) = Y. (12)

In particular, the restriction to Ui is a non-zero DUi
-module for each i ∈ I.

Denote by E∗ the complement of the zero section of E = Tot(E )
π−→ Y . For i ∈ I, the choice of a

point wi ∈ E∗ such that pi := π(wi) ∈ Ui determines a local section si ∈ Γ(Ui,E ) geometrically given by

si : Ui

∼=−→ Ni → π−1(Ui)

g · pi ← [ g 7→ g · wi.

Here, we use that Ni → Ui, g 7→ g ·pi is an isomorphism, since Ni is assumed to act freely and transitively
on Ui. Since E∗ is invariant under the action of G′ on E, the local section si does not vanish on Ui,
hence E|Ui

= OUi
si.

By definition, si is an Ni-invariant section of E|Ui
, hence ξ · si = 0 holds for all ξ ∈ Lie(Ni) =: ni.

Since Ni acts transitively on Ui, the OUi
-module homomorphism OUi

⊗ ni → ΘUi
is surjective, so from

the above we may deduce that ΘUi
annihilates the cyclic DUi

-module (DY ⊗AY
E )|Ui

generated by 1⊗si.
Take any ξ ∈ g′. Then ξ · si = f · si for some f ∈ Γ(Ui,OUi

). But then f annihilates (DY ⊗AY
E )|Ui

,
as f · (1⊗ si) = 1⊗ (ξ · si) = ZY (ξ)|Ui

· (1⊗ si) = 0. Because of (12), this forces

ξ · si = 0 for all ξ ∈ g′.

On Uij := Ui ∩ Uj for i, j ∈ I, the non-vanishing local sections si and sj only differ by an invertible
function:

(si)|Uij
= αij(sj)|Uij

, αij ∈ Γ(Uij ,O×Uij
).

Since

0 = ξ · (si)|Uij
= ξ · (αij(sj)|Uij

) = ZY (ξ)|Uij
(αij)(sj)|Uij

+ αij(ξ · (sj)|Uij
) = ZY (ξ)|Uij

(αij)(sj)|Uij
,

we see that αij = 0 is annihilated by all vector fields on Uij (since ΘY is globally generated by the image
of ZY : OY ⊗ g′ → ΘY ). Therefore, αij ∈ C∗.

We may now fix some k ∈ I and define non-vanishing sections

s̃i := α−1ki si ∈ Γ(Ui,E ) for all i ∈ I

which are still annihilated by the action of g′. Then s̃i and s̃j agree on Uij for all i, j ∈ I, so they glue
to a global non-vanishing section s̃ ∈ Γ(Y,E ) annihilated by g′. This section defines an isomorphism
E ∼= OY of left AY -modules and hence of G′-equivariant line bundles.
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4.3 Twist by characters and non-vanishing of tautological systems

Next we relate the construction from the previous section to the D-modules N β
Y from Definition 4.6.

Recall from Corollary 4.11 that these D-modules describe restrictions of Fourier-transformed tautological
systems and hence we obtain in Theorem 4.28 below a non-vanishing result for tautological systems
τ(ρ, Y , β) based on the non-vanishing of N β

Y .
To start with, we need to consider twists of equivariant line bundles by characters:

Definition 4.22. Let χ : G′ → C∗ be a character. We define a G′-equivariant line bundle OY {χ} on Y
by equipping the trivial line bundle OY with a G′-equivariant structure such that the action of G′ on
Tot(OY {χ}) = C× Y is given by g · (λ, y) = (χ(g)λ, g · y).

For any G′-equivariant line bundle E , consider the G′-equivariant line bundle

E {χ} := E ⊗OY
OY {χ},

which has the same underlying OY -module, but a different equivariant structure. ♢

One easily checks that Hom(G′,C∗)→ PicG
′
(Y ), χ 7→ OY {χ} is a group homomorphism.

Remark 4.23. For a given equivariant line bundle E whose G′-action is given on E := Tot(E ) as
φ : G′ × E → E, the G′-action on Tot(E {χ}) = E is given by

G′ × E → E, (g, e) 7→ µ
(
χ(g), φ(g, e)

)
,

where µ : C∗ × E → E denotes the natural C∗-action on E by scaling fibers. ♢

We have seen before that every G′-equivariant line bundle on Y is a left AY -module, so for every
character χ : G′ → C∗, we get the left AY -module

OY {χ} ∼= AY /AY (ξ − dχ(ξ) | ξ ∈ g′),

where dχ : g′ → C is the Lie algebra homomorphism induced by χ.
Note that the left AY -module structure on a G′-equivariant line bundle E results just from the

infinitesimal action of g′ on local sections of E . Therefore, it is natural to make the following more
general definition:

Definition 4.24. For any Lie algebra homomorphism β : g′ → C, we define the left AY -module

OY {β} := AY /AY (ξ − β(ξ) | ξ ∈ g′).

If E is a left AY -module, then denote by E {β} the left AY -module E ⊗OY
OY {β}. ♢

This may in general not be a G′-equivariant line bundle. Note that OY {χ} ∼= OY {dχ} as AY -modules
for χ : G′ → C∗ inducing dχ : g′ → C. Similarly to before, given a left AY -module E , we denote by E {β}
the left AY -module E ⊗OY

OY {β}. If E is a line bundle with a left AY -module structure, we denote
(E {β})∨ := E ∨{−β}.

Recall from Definition 4.6 that for any Lie algebra homomorphism β : g′ → C on a smooth connected
G′-variety Y , we defined the left DY -module

N β
Y := ω∨Y ⊗OY

DY /(ZY (ξ)− β(ξ) | ξ ∈ g′)DY .

Our next aim is to show the following result describing this DY -module as arising from a g′-module
structure on the anticanonical bundle on Y :

Proposition 4.25. Let β : g′ → C be a Lie algebra homomorphism. Considering ωY with its natural
G′-equivariant structure, there is an isomorphism of left DY -modules

DY ⊗AY
(ωY {β})∨ ∼= N β

Y .
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For the proof of Proposition 4.25, we need some technical remarks on left-right transforms of AY -
modules that we carry out first:

The line bundle αY :=
∧dimG′

(OY ⊗C g′)∨ on Y has the structure of a right AY -module which is
given by the negated Lie derivative: A Lie algebra element ξ ∈ g′ acts on an alternating form ω by
mapping it to the alternating form ω · ξ given by

(ω · ξ)(θ1, . . . , θm) = −ZY (ξ)(ω(θ1, . . . , θm)) +

m∑
i=1

ω(θ1, . . . , [ξ, θi], . . . , θm)

for any θ1, . . . , θm ∈ OY ⊗C g′. This defines transformations between left and right AY -modules giving
rise to an equivalence of categories

Mod(AY )
∼=−−−−−−−−→ Mod(Aop

Y ),

M 7−→ αY ⊗OY
M,

α∨Y ⊗OY
M′ ←− [ M′.

Remark 4.26. If ξ1, . . . , ξm form a C-basis of g′, then

αY = OY ξ
∗
1 ∧ · · · ∧ ξ∗m

The right action on αY is given by

(f ξ∗1 ∧ · · · ∧ ξ∗m) · ξ =
(
trace(ad(ξ))− ZY (ξ)(f)

)
ξ∗1 ∧ · · · ∧ ξ∗m for ξ ∈ g′.

In general, ifM is a left AY -module, then the right AY -module structure on αY ⊗OY
M is given by

(ξ∗1 ∧ · · · ∧ ξ∗m ⊗ s) · ξ = ξ∗1 ∧ · · · ∧ ξ∗m ⊗
(
trace(ad(ξ))− ξ

)
· s for ξ ∈ g′, s ∈M.

♢

The canonical bundle ωY on Y is a right DY -module and hence, via Z̃Y : AY → DY , it also has the
structure of a right AY -module. On the other hand, the action of G′ on Y extends naturally to an action
on the tangent bundle on Y , so ωY =

∧dimY
Θ∨Y is naturally a G′-equivariant line bundle, which induces

a left AY -module structure. The next lemma states that these left and right module structures on ωY

relate to each other via the transformation above:

Lemma 4.27. Let δ := trace ◦ ad: g′ → C and let ξ1, . . . , ξm form a C-basis of g′. There is an isomor-
phism of right AY -modules

ωY

∼=−→ αY ⊗OY
ωY {δ}

s 7→ ξ∗1 ∧ · · · ∧ ξ∗m ⊗ s,

where on the left hand side, ωY is endowed with its right AY -module structure induced from the homo-
morphism Z̃Y : AY → DY , and on the right hand side, we consider ωY with its left AY -module structure
by viewing it as a G′-equivariant line bundle.

Proof. Denote a := ξ∗1 ∧ · · · ∧ ξ∗m ∈ Γ(Y, αY ) and recall that ξ1, . . . , ξm are a C-basis of g′. Since a is a
non-vanishing global section of the line bundle αY , the homomorphism ωY → αY ⊗OY

OY {δ} ⊗OY
ωY ,

s 7→ a⊗ 1⊗ s is an isomorphism of OY -modules, hence it suffices to show:

(a⊗ 1⊗ s) · ξ !
= a⊗ 1⊗ (s · ξ)

for s ∈ ωY , ξ ∈ g′.
The right AY -module structure on ωY (inherited from the right DY -module structure) is given by

(s · ξ)(θ1, . . . , θm) = −ZY (ξ)(s(θ1, . . . , θn)) +

m∑
i=1

s(θ1, . . . , [ZY (ξ), θi], . . . , θn)
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for ξ ∈ g′, s ∈ ωY , θ1, . . . , θn ∈ ΘY . On the other hand, the right AY -module αY satisfies a · ξ = δ(ξ)a,
so the right AY -module structure on αY ⊗OY

OY {δ} satisfies

(a⊗ 1) · ξ = 0.

The left AY -module structure on ωY results from the left AY -module structure on the G′-equivariant
vector bundle ΘY given by

ξ · θ = [ZY (ξ), θ] for all ξ ∈ g′

The induced left AY -module structure on
∧n

ΘY is given by

ξ · (θ1 ∧ · · · ∧ θn) =
n∑

i=1

θ1 ∧ · · · ∧ [ZY (ξ), θi] ∧ · · · ∧ θn

for ξ ∈ g′. Passing to the dual line bundle ωY , we get

(ξ · s)(θ1, . . . , θn) = ZY (ξ)(s(θ1, . . . , θn))−
n∑

i=1

s(θ1, . . . , [ZY (ξ), θi], . . . , θn)

= −(s · ξ)(θ1, . . . , θn) for all ξ ∈ g′.

The right AY -module structure on αY ⊗OY
OY {δ} ⊗OY

ωY resulting from this satisfies

(a⊗ 1⊗ s) · ξ = ((a⊗ 1) · ξ)⊗ s− (a⊗ 1)⊗ (ξ · s) = a⊗ 1⊗ (s · ξ)

for ξ ∈ g′.

We can now turn to the proof of the description of N β
Y via the (twisted) equivariant anti-canonical

bundle:

Proof of Proposition 4.25. Equivalently to the claim, we may show that there is an isomorphism between
the corresponding right DY -modules

ωY ⊗OY

(
DY ⊗AY

(ωY {β})∨
) !∼= DY /(ZY (ξ)− β(ξ) | ξ ∈ g′)DY .

By Lemma 4.15.2, we have an isomorphism of right DY -modules

ωY ⊗OY

(
DY ⊗AY

(ωY {β})∨
) ∼= (ωY ⊗OY

(ωY {β})∨)⊗AY
DY ,

where, on the right hand side, the first occurrence of ωY is equipped with the right AY -module structure
inherited from its right DY -module structure. Combining this with Lemma 4.27, we obtain:

ωY ⊗OY

(
DY ⊗AY

(ωY {β})∨
) ∼= (αY ⊗OY

ωY {δ} ⊗OY
(ωY {β})∨)⊗AY

DY

∼= (αY ⊗OY
ωY ⊗OY

ω∨Y ⊗OY
OY {δ − β})⊗AY

DY

where δ := trace ◦ ad: g′ → C and ωY is now considered as a left AY -module via its natural structure as
a G′-equivariant line bundle. Since ωY ⊗OY

ω∨Y
∼= OY as G′-equivariant line bundles (and therefore also

as left AY -module), we conclude:

ωY ⊗OY

(
DY ⊗AY

ω∨Y {β}
) ∼= (αY ⊗OY

OY {δ − β})⊗AY
DY .

Recall that OY {δ − β} ∼= AY /AY (ξ − (δ − β)(ξ) | ξ ∈ g′), so by Remark 4.26, we have

αY ⊗OY
OY {δ − β} ∼= AY /(ξ − β(ξ) | ξ ∈ g′)AY

as right AY -modules. Tensoring with DY over AY by means of the homomorphism Z̃Y : AY → DY

yields the claimed result.

By using all the constructions and results of this section, we get the following non-vanishing theorem
for tautological systems:
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Theorem 4.28. Let ρ : G′ → GL(V ) be a finite-dimensional rational representation. Let Y ⊆ V be a
G′-orbit and let Y be its closure. Let β : g′ → C be a Lie algebra homomorphism. If (ωY {β})⊗k ∼= OY

for some k ∈ Z as left AY -modules, then τ̂(ρ, Y , β) ̸= 0, and hence also τ(ρ, Y , β) ̸= 0.

Proof. By Corollary 4.11, we have i+N β
Y
∼= τ̂(ρ, Y , β)|U , where i denotes the closed embedding of Y into

U := V \ ∂Y for ∂Y := Y \ Y . With Proposition 4.25, we conclude that

τ̂(ρ, Y , β)|U ∼= i+
(
DY ⊗AY

(ωY {β})∨
)

as left DL∗ -modules. To show that the right hand side is non-zero, it suffices to see that we have
DY ⊗AY

(ωY {β})∨ ̸= 0. But this follows from Corollary 4.19 respectively Remark 4.20, because we
assumed that (ωY {β})⊗k ∼= OY as left AY -modules.

4.4 Application to projective homogeneous spaces

We now apply the previous results to the following setup: Consider a smooth projective variety X with
a transitive action of a reductive connected linear algebraic group G (i.e., X is a homogeneous space).
Let L → X be a G-equivariant line bundle on X with sheaf of sections L . We consider G′ := G × C∗
and denote the Lie algebras involved by g′ := Lie(G′), g := Lie(G) and Lie(C∗) = Ce, so

g′ = g⊕ Ce.

We view L as a G′-equivariant line bundle on X by letting the C∗-factor of G′ act trivially on X and
by inverse scaling on the fibers of L→ X. Note that then G′ acts transitively on L∗. Denote by L∗ ⊆ L
the complement of its zero section. The morphisms to X are denoted πL : L→ X and πL∗

: L∗ → X.

Lemma 4.29. Every point of X admits an open neighborhood on which a subgroup of G acts freely
and transitively. The same holds for the action of G′ on L∗.

Proof. For any point p ∈ X, the stabilizer P := {g ∈ G | g · p = p} describes the variety as a quotient:

G/P
∼=−→ X, gP 7→ g · p.

Since X is projective, the subgroup P ⊆ G is parabolic. Let N− ⊆ G be the unipotent radical of
the opposite parabolic subgroup to P in G. Then N− ∩ P = 1, which shows that N− acts freely and
transitively on the N−-orbit N− · p. On the other hand, we have Lie(N−) ⊕ Lie(P ) = g as C-vector
spaces, so N− · p is of dimension dimG− dimP = dimX, hence it is an open neighborhood of p in X.

For the G′-action on L∗, take any point w ∈ L∗ and consider p = πL∗
(w) in the argument above.

Then πL∗,−1(U) is an open neighborhood of w in L∗ on which C∗ × N− ⊆ G′ acts transitively and
freely.

In the following, we remark that the assumptions onX guarantee that we are in the setup of Section 2.

Remark 4.30. Projective homogeneous spaces X ∼= G/P are smooth Fano variety (we recall a short
representation-theoretic argument in Lemma 5.14 below). As such, it has the property that the under-
lying complex manifold Xan is simply-connected (see e.g. [Deb01, Corollary 4.29]). In particular, we
may apply Proposition 2.1 to Xan to get k ∈ Z>0 with π1(L

∗,an) ∼= Z/kZ and we may consider the

DL∗ -modules Oℓ/k
L∗ for ℓ ∈ Z as in Definition 2.2.

Additionally, the Fano property of X implies Hi(X,OX) = 0 for all i > 0 by the Kodaira vanishing
theorem, hence in particular Pic(X) = H1(X,O×X) ∼= H2(Xan,Z). In algebraic terms, the integer k
in the statement of Proposition 2.1 is therefore the largest positive integer such that L admits a k-th
root in the Picard group. Moreover, Pic(X) ∼= H2(Xan,Z) has no torsion, as observed in the proof of
Proposition 2.1. ♢

Lemma 4.31. LetM be a G′-equivariant line bundle on X. Then

πL∗,∗M∼= OL∗ ⇔ M∼= L ⊗r for some r ∈ Z,

where both sides are isomorphisms of G′-equivariant line bundles.
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Proof. For the implication “⇐”, it suffices to consider the case r = 1. Note that the G′-equivariant

structure on πL∗,∗L corresponds to the diagonal G′-action on Tot(πL∗,∗L ) = L∗ ×X L
pr1−−→ L∗. Note

further that the map

s : L∗
∆−→ L∗ ×X L∗ ↪→ L∗ ×X L

is a G′-invariant global section of the line bundle πL∗,∗L that vanishes nowhere on L∗. Then

OL∗ → πL∗,∗L , 1 7→ s

is an isomorphism of G′-equivariant line bundles.
To show the implication “⇒”, letM be a G′-equivariant line bundle on X with πL∗,∗M∼= OL∗ . This

means that there is a G′-invariant global section of πL∗,∗M which we may view as a morphism

s : L∗ → Tot(πL∗,∗M) = L∗ ×X M,

whereM = Tot(M) and where s is the identity on the first component. Since the section is non-vanishing,
it is therefore given by s = idL∗ ×φ for some morphism

φ : L∗ →M∗

over X. The G′-invariance of the section s translates to G′-equivariance of the morphism φ. Recall that
the C∗-factor of G′ = G×C∗ acts trivially onX and by inverse scaling on the fibers of πL : L→ X. Notice
that on M , the C∗-action must also be given fiberwise, so there exists some r ∈ Z such that C∗ ⊆ G′

acts on fibers of πM : M → X by scaling with (−r)-th powers. In particular, the C∗-equivariance of
φ : L∗ →M∗ implies the following fiberwise description: Over p ∈ X, we have

φp : L
∗
p

∼=−→ C∗
λ7→λr

−−−−→ C∗
∼=−→M∗p

λw ←[ λ µ 7→ µφ(w)

for any choice of w ∈ L∗p. From this, we can conclude M ∼= L ⊗r, for instance as follows: Take an
open cover X =

⋃
i∈I Ui trivializing L as L|Ui

= OUi
si for some choice of non-vanishing local sections

si ∈ Γ(Ui,L ). On Uij := Ui ∩ Uj , we have si = αijsj for some αij ∈ Γ(Uij ,O×Uij
) and the collection

(αij)i,j∈I forms a Čech cocycle whose class in H1(X,O×X) ∼= Pic(X) defines the isomorphism class of
L . Viewing the sections si geometrically as morphisms Ui → L∗, we may compose them with φ to get
non-vanishing local sections φ ◦ si ∈ Γ(Ui,M). On Uij , we then have φ ◦ si = (αr

ij)(φ ◦ sj) since φ is
given on fibers of X by taking r-th powers. This shows that the class of M in the Picard group of X
is the class of the Čech cocycle (αr

ij)i,j∈I in H1(X,O×X) ∼= Pic(X). On the other hand, the same is true
for the line bundle L ⊗r (as can e.g. be seen in the same way, using the morphism L∗ → L⊗r,∗ given by
fiberwise r-th powers). Hence,M∼= L ⊗r and the G′-equivariance of this isomorphism follows from the
G′-equivariance of φ.

Lemma 4.32. There is an isomorphism

ωL
∼= πL,∗ωX ⊗OL

πL,∗L ∨

of G′-equivariant line bundles on L. In particular, ωL∗ ∼= πL∗,∗ωX as G′-equivariant line bundles on L∗.

Proof. The second claim follows directly from the first claim by pulling back the line bundles to L∗ and
using Lemma 4.31. Hence, it suffices to prove the formula for ωL.

Let F be a G′-equivariant vector bundle on X and put F := Tot(F ) with projection πF : F → X.
The variety F is then equipped with a G′-action. We first claim that there is an isomorphism

ΘF/X
∼= πF,∗F .

of G′-equivariant vector bundles on F , and a corresponding isomorphism Ω1
F/X

∼= πF,∗F∨ of dual vector

bundles. Namely, any section s ∈ Γ(U,F) can be considered as an element s ∈ Γ(U,HomOX
(F∨,OX)),

and it extends via the Leibniz rule as a section of Γ(U,DerOX
(SymOX

(F∨)). This yields a G′-equivariant
morphism of OX -modules

F −→ DerOX
(SymOX

(F∨)) = DerOX
(πF
∗ OF ).
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It is also injective, since for any s ̸= 0, there is some section of F∨ that is not killed by s, so that s is
not the zero derivation in DerOX

(πF
∗ OF ). Since both F and DerOX

(πF
∗ OF ) are locally free of the same

rank, it follows that the cokernel of the inclusion F ↪→ DerOX
(πF
∗ OF ), if not zero, must be a torsion

sheaf on X, but this is impossible since this map is equivariant, and so is its cokernel. We conclude
that there is an isomorphism F ∼= DerOX

(πF
∗ OF ) of G

′-equivariant vector bundles on X. Applying the
functor πF,∗ then yields an isomorphism

πF,∗F
∼=−→ πF,∗DerOX

(πF
∗ OF )

(⋆)∼= DerπF,−1OX
(OF ) ∼= ΘF/X ,

of G′-equivariant bundles on F , as required. Notice that the isomorphism (⋆) in the above displayed
formula holds since the map πF is affine.

We apply this to the special case F = L, i.e., rk(F ) = 1, to obtain the OL-isomorphism

ωL/X
∼= πL,∗L ∨, (13)

which again is G′-equivariant.
Consider the cotangent sequence

0 −→ πL,∗Ω1
X −→ Ω1

L −→ ωL/X −→ 0,

which, since πL : L → X is G′-equivariant, is an exact sequence of G′-equivariant vector bundles on

L. Applying
∧dim(X)+1
OL

(−) to this sequence, we get the following isomorphism of G′-equivariant line
bundles on L:

ωL
∼= πL,∗ωX ⊗OL

ωL/X .

Plugging in the isomorphism from Equation (13) yields

ωL
∼= πL,∗ωX ⊗OL

πL,∗L ∨,

as required.

Proposition 4.33. Let β : g′ → C be a Lie algebra homomorphism with β|g ≡ 0. Let k ∈ Z>0 be such
that π1(L

∗,an) ∼= Z/kZ (see Section 2). Then

N β
L∗
∼=

{
Oℓ/k

L∗ if ∃ℓ ∈ Z : β(e) = ℓ/k and L ⊗ℓ ∼= ω
⊗(−k)
X as G-equivariant line bundles,

0 otherwise.

Proof. Recall from Definition 4.6 that

N β
L∗ := ω∨L∗ ⊗OL∗ DL∗/(ZL∗(ξ)− β(ξ) | ξ ∈ g′)DL∗ .

We first assume that N β
L∗ ̸= 0. Since G′ acts transitively on L∗, the vector fields ZL∗(ξ), when ξ runs

through g′, generate the tangent bundle of L∗. This implies that N β
L∗ is a smooth DL∗ -module of rank

one, i.e., corresponds to a local system on L∗,an. By the discussion in Section 2, we therefore have an

isomorphism of DL∗ -modules N β
L∗
∼= Oℓ/k

L∗ for some ℓ ∈ Z. Let U ⊆ X be a Zariski open affine coordinate
set (in the algebraic sense, see, e.g. [HTT08, Definition A.5.2]) such that L trivializes over U . Then

N β
L∗|C∗×U

∼= DC∗×U/DC∗×U (ZL∗(ξ)T|C∗×U | ξ ∈ g) + DC∗×U (−∂tt− β(e)),

where we denote by (−)T the transpose of a differential operator written in the chosen local coordinates.

Now using Proposition 2.3 the isomorphism Oℓ/k
L∗|C∗×U

∼= N β
L∗|C∗×U can be made explicit, and then

it follows easily that β(e)− ℓ/k must be an integer, but this yields an isomorphism N β
L∗
∼= Oβ(e)

L∗ by the

remark after Definition 2.2. In particular, this shows that when N β
L∗ ̸= 0, we must have β(e) ∈ 1

kZ.
In order to show the remaining statements, we therefore assume that β(e) = ℓ/k ∈ Q for some ℓ ∈ Z.

By Proposition 4.25, we know
N β

L∗
∼= DL∗ ⊗AL∗ (ωL∗{β})∨.
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Because of Lemma 4.29, we may apply Proposition 4.21 to decide when a DL∗ -module of the form
DL∗ ⊗AL∗ E is non-zero. However, notice that this criterion only applies to equivariant line bundles E ,
while (ωL∗{β})∨ is for non-integral β(e) only a line bundle with an AL∗ -module structure. However, the
k-th tensor power

(ωL∗{β})⊗(−k) ∼= ω
⊗(−k)
L∗ {−kβ},

underlies an equivariant line bundle, since kβ = dχℓ, where χℓ : G
′ = G×C∗ → C∗ is the character given

by (g, t) 7→ tℓ. With Proposition 4.18/Remark 4.20 and Proposition 4.21, we see that

N β
L∗ ̸= 0 ⇔ DL∗ ⊗AL∗ (ωL∗{β})∨ ̸= 0 ⇔ DL∗ ⊗AL∗ ω

⊗(−k)
L∗ {−dχℓ} ≠ 0 ⇔ ω

⊗(−k)
L∗ {− dχℓ} ∼= OL∗ .

Now ωL∗ ∼= πL∗,∗ωX as G′-equivariant line bundles by Lemma 4.32 and Lemma 4.31. Hence,

ω
⊗(−k)
L∗ {− dχℓ} ∼= πL∗,∗(ω⊗(−k)X {−dχℓ}

)
.

By using this, and invoking Lemma 4.31 again, we see that

N β
L∗ ̸= 0 ⇔ ω

⊗(−k)
X {− dχℓ} ∼= L ⊗r as G′-equivariant line bundles for some r ∈ Z.

Since the C∗-factor of G′ acts trivially on X, note that the natural C∗-equivariant structure on ω
⊗(−k)
X

is also trivial. On the other hand, C∗ acts by inverse scaling on the fibers of L = Tot(L ). Hence, if

ω
⊗(−k)
X {dχℓ} ∼= L ⊗r holds for some r ∈ Z, we must have r = ℓ. Therefore:

N β
L∗ ̸= 0 ⇔ ω

⊗(−k)
X {−dχℓ} ∼= L ⊗ℓ as G′-equivariant line bundles.

⇔ ω
⊗(−k)
X

∼= L ⊗ℓ as G-equivariant line bundles.

We now conclude with the final result of this section classifying when Fourier-transformed tautological
systems are non-zero away from the origin. We work in the setup stated at the beginning of this section,
i.e., X is projective and admits a transitive action by a reductive algebraic group G, L is G-equivariant,
G′ := C∗ ×G, and G′ acts on L by letting the C∗-factor act by inverse scaling in the fibres. Moreover,
we now assume that L on X is very ample. Consider the G′-representation ρ : G′ → GL(V ) with
V := H0(X,L )∨ and the equivariant closed embedding X ↪→ PV defined by |L |. Let X̂ ⊆ V be the
affine cone of X in V .Notice that we have an isomorphism X̂ \ {0} ∼= L∨,∗, given by identifying L∨

with the blow-up of X̂ at the origin. We write i for the closed embedding of X̂ \ {0} into V \ {0}.
Together with the isomorphism inv: L∗ → L∨,∗ given by inverting fibers, we obtain a closed embedding
i′ : L∗ ↪→ V \ {0} defined by i′ := i ◦ inv, as shown in the following diagram.

L L∗

X̂ \ {0} V \ {0}

Bl{0}(X̂) ∼= L∨ L∨,∗

jL

inv ∼=

i′

i

jL∨

∼=

(14)

Theorem 4.34. Let β : g′ → C be a Lie algebra homomorphism with β|g ≡ 0. Let k ∈ Z>0 be such that
π1(L

∗,an) ∼= Z/kZ (see Section 2). Then

τ̂(ρ, X̂, β)|V \{0} ∼=


i′+O

ℓ/k
L∗ if ∃ℓ ∈ Z : β(e) = ℓ/k and L ⊗ℓ ∼= ω

⊗(−k)
X

as G-equivariant line bundles,

0 otherwise.

Proof. This follows directly from the work above by combining Corollary 4.11 (applied to Y = X̂ \ {0})
and Proposition 4.33.

For convenience, we roughly summarize the main steps that led to the proof of Theorem 4.34:
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� The restriction of τ̂(ρ, X̂, β) to V \ {0} is supported on X̂ \ {0} ∼= L∗ and can be described as

i+N β

X̂\{0}
(Corollary 4.11). Here, N β

X̂\{0}
arises from a cyclic right D-module constructed from

the vector fields induced by the group action (Definition 4.6).

� The D-module N β

X̂\{0}
is alternatively described as DX̂\{0}⊗AX̂\{0}

(ωX̂\{0}{β})∨ (Proposition 4.25),

where AX̂\{0} = OX̂\{0} ⊗ U(g′) and (ωX̂\{0}{β})∨ is the anticanonical bundle with a g′-module
structure determined by β.

� Identifying X̂ \ {0} with L∗, we can argue that DX̂\{0} ⊗AX̂\{0}
(ωX̂\{0}{β})∨ is non-zero if and

only if L is a ℓ/k-th rational power of ω∨X and is equipped with a suitable equivariant structure
(Proposition 4.33). The geometric reason is that in this case (ωX̂\{0}{β})⊗k ∼= OX̂\{0}. This
statement is based on vanishing results for D-modules constructed from equivariant line bundles
in this way (Proposition 4.18, Corollary 4.19 and Proposition 4.21).

� In the cases that N β

X̂\0
is non-zero, it is a smooth D-module of rank 1. As such, it is isomorphic

to Oℓ/k
L∗ (see Section 2) and one confirms that β(e) = ℓ/k (see Proposition 4.33).

Remark 4.35. If G is a semisimple linear algebraic group, then we have [g, g] = g. This shows that
β|g ≡ 0 holds for every Lie algebra homomorphism β : g′ → C, so this condition in Theorem 4.34 is
always fulfilled in this case. ♢

Remark 4.36. For G not semisimple, let us drop the assumption β ≡ 0. If τ̂(ρ, X̂, β)|V \{0} ̸= 0, then

it is necessarily of the form i′+O
ℓ/k
L∗ for some ℓ ∈ Z as before, since N β

L∗ is a smooth DL∗ -module of rank

one. One can also show that N β
L∗
∼= Oℓ/k

L∗ forces kβ = dχ for some group character χ : G′ → C∗. With
the same arguments as in the proofs above, we then get:

τ̂(ρ, X̂, β)|V \{0} ∼=


i′+O

ℓ/k
L∗ if ∃ℓ ∈ Z : β(e) = ℓ/k and L ⊗ℓ{χ} ∼= ω

⊗(−k)
X

as G-equivariant line bundles,

0 otherwise.

Hence, in the general situation we still only get a non-zero τ̂(ρ, X̂, β)|V \{0} for L being a rational power
of the anticanonical bundle and for exactly one suitable β uniquely determined by L . ♢

5 Representation theoretic criterion

The purpose of this section is to give a necessary criterion for the non-vanishing of tautological systems
in terms of the representation of G on the space V = H0(X,L)∨, at least in the case where G is semi-
simple. On the one hand, this is a slight sharpening of one direction of Theorem 4.34, which only
concerns vanishing of τ̂(ρ, X̂, β) on V \{0}. On the other hand, the methods used here heavily rely on
the representation theory of semi-simple Lie algebras, and this section is therefore in large parts logically
independent of the rest of the paper.

5.1 Formula for β(e)

We work in the same setup as in Theorem 4.34. Additionally, we assume throughout this section

G is semisimple.

This implies automatically that any Lie algebra homomorphism β : g′ → C satisfies β|g = 0, since
g = [g, g]. In particular, the choice of β is equivalent to the choice of a complex number β(e). As we
will see, the tautological system τ(ρ, X̂, β) will only be non-zero for particular values of β(e) that we
can express in terms of the highest weight of the (necessarily irreducible by Borel–Weil, see e.g. [Ser54]
or [Bot57, Cor. to Th. V] or also Theorem 5.11 below) G-representation ρ.
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To state this formula, let t be a Cartan subalgebra of g, let Φ+ ⊆ t∨ be a choice of positive roots,
and set

δ :=
1

2

∑
λ∈Φ+

λ.

Theorem 5.1. Let µ be the highest weight of the irreducible G-representation V := H0(X,L )∨. If
τ(ρ, X̂, β) is nonzero, then

β(e) ∈
{
0,

2⟨δ, µ⟩
|µ|2

}
,

where ⟨−,−⟩ is the inner product on t∨ dual to (the restriction to t of) the Killing form, and |µ| =√
⟨µ, µ⟩.

Corollary 5.2. If τ(ρ, X̂, β) ̸= 0, then β(e) is a non-negative rational number.

Proof. Since µ is a highest weight, the inner product of µ with all positive roots is a non-negative integer,

hence ⟨δ, µ⟩ ≥ 0 and so 2⟨δ,µ⟩
|µ|2 ∈ Q≥0.

In the remainder of this section, we will give proof of Theorem 5.1 as well as a more geometric
interpretation of it.

Notation 5.3. Throughout this section, we use the following notation.

� g′ = Ce⊕ g – the Lie algebra of G′

� T – a maximal torus of G

� B – a Borel subgroup of G containing T

� t – the Lie algebra of T

� Φ(M,T ) – the roots of an (affine) algebraic group M relative to a subtorus T . This is the set of
characters λ : T → C∗ of T such that

mα := {ξ ∈ m | Ad(t)ξ = λ(t)ξ} ≠ 0,

where m is the Lie algebra of M . (Cf. [Hum75])

� Φ := Φ(G,T ) – the root system of G relative to T . As usual, we view this as a subset of t∨.

� Φ+ := Φ(B, T ) – the choice of positive roots corresponding to B

� ∆ ⊆ Φ+ – the simple roots

� δ :=
1

2

∑
α∈Φ+

α – the Weyl vector.

� B(−,−) – the Killing form on g

� ⟨−,−⟩ – the symmetric bilinear form on t∨ induced by the restriction to t of the Killing form. Since
g is semisimple, ⟨−,−⟩ is nondegenerate. ♢

Since g is semisimple, there is a decomposition

g =

(⊕
α∈Φ+

g−α

)
⊕ t⊕

(⊕
α∈Φ+

gα

)
.

Each gα is one-dimensional. In fact, one can choose a generator Eα ∈ gα for each α ∈ Φ such that
[Eα, E−α] =: Hα ∈ t, B(Eα, E−α) = 1, [Hα, Eα] = 2Eα, and [Hα, E−α] = −2E−α. Note that the Hα

might not form a basis for t, as there may be too many of them.
A straightforward argument shows that for each α ∈ Φ+, Hα is the unique element of t for which

B(H,Hα) = α(H) for all H ∈ t. We can use this property to define Hλ for all λ ∈ t∨—then the
nondegenerate bilinear form ⟨−,−⟩ is given by

⟨λ, λ′⟩ = B(Hλ, Hλ′) = λ(Hλ′) = λ′(Hλ).
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Definition 5.4. The (second order) Casimir element is the element

C :=
∑
i

AiBi ∈ U(g),

where {Ai} is any basis for g, and {Bi} is the dual basis under the Killing form. In particular, if {Hi}
is an orthonormal basis of t with respect to the Killing form, then

C =
∑
i

H2
i +

∑
α∈Φ+

EαE−α +
∑

α∈Φ+

E−αEα.

♢

A straightforward exercise shows that C is in the center of U(g).

Lemma 5.5. Let U be an irreducible representation of g with lowest weight λ and lowest weight vector
vλ. Then

C · vλ =
(
|λ|2 − 2⟨δ, λ⟩

)
vλ.

Proof. Then

C · vλ =

(∑
i

H2
i +

∑
α∈Φ+

EαE−α +
∑

α∈Φ+

E−αEα

)
· vλ

=

(∑
i

H2
i −

∑
α∈Φ+

Hα + 2
∑

α∈Φ+

EαE−α

)
· vλ

=

(∑
i

H2
i − 2Hδ

)
· vλ,

since Eα kills vλ. Now use that
∑

iH
2
i · vλ =

∑
i λ(Hi)vi = |λ|2vi and Hδ · vλ = λ(Hδ)vλ.

For the proof of Theorem 5.1, we need a few facts about differential operators on affine varieties,
which we introduce now. The full power the theory of such operators is not needed here, so we only
touch on a very small bit of it.

Set

R := Γ(V,OV ), DV := Γ(V,DV ), and S := R/I,

where I is the defining ideal of X̂.
Define

A := {P ∈ DV | P (I) ⊆ I},

J := {P ∈ DV | P (R) ⊆ I} =
∑

α∈Nn I∂α,
(15)

and
ψ : A −→ EndC(S)

P 7−→ (f 7→ P • f)

DS := im(ψ).

(16)

Note that it is not immediately obvious that this DS is the same as the ring of Grothendieck differential
operators of S over C—that it is is the content of the surjectivity part of [Mil99, 1.2. Prop.]. That said,
for our application in the proof of Theorem 5.1, we will start with a particular element of A, and we will
need to show that it is in fact in J . In other words, we need the following

Lemma 5.6 ([Mil99, part of 1.2. Prop.]). kerψ = J . In particular, kerψ ⊆ IDV .
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Under the assumption that G is semi-simple, the definition of τ̂(ρ, X̂, β) simplifies to

τ̂(ρ, X̂, β) = DV /
(
DV I + DV (Z(ξ) | ξ ∈ g) + DV (Z(e)− dimV + β(e))

)
.

Here, we denote by Z(ξ) the vector field ZV (ξ) defined in Section 4.1 and we will also denote by Z the
map U(g′)→ DV extending it.

Because X is G-invariant, the ideal I is g′-stable, i.e. Z(ξ)(I) ⊆ I for all ξ ∈ g′. Hence, the map
Z induces a g′-module structure on S for which the elements of g′ act via derivations. If Sd is the dth
graded component of S, then

ξ · Sd ⊆ Sd for all ξ ∈ g,

and
e · f = −df for all f ∈ Sd. (17)

Denote the induced map U(g′)→ EndC(S) by ZS .

Lemma 5.7. ZS(C) = ZS(e)
2|µ|2 − 2ZS(e)⟨δ, µ⟩.

Proof. By definition, R1 = V ∨. The construction of the embedding X ↪→ PV implies that R1 = S1 also.
Hence, if x ∈ S1

∼= V ∨ is a lowest weight vector, it has lowest weight −µ (recall that µ is the highest
weight of V ). A straightforward argument shows that for all d ∈ N, the element xd is a lowest weight
vector of Sd with lowest weight −dµ. Hence, by Lemma 5.5,

C · xd = (| − dµ|2 − 2⟨δ,−dµ⟩)xd.

Since C is in the center of the universal enveloping algebra, it acts on the irreducible g-representation
Sd as a scalar, which then must be the factor on the right hand side. Now use that e acts on Sd as
multiplication by −d (eq. (17)).

By definition, the operators Z(C) and Z(e)2|µ|2−2Z(e)⟨δ, µ⟩ are contained in the subalgebra A from
(15). By Lemma 5.7, their difference is in the kernel of the map ψ from (16). Hence, by Lemma 5.6, we
know that

Z(C)−
(
Z(e)2|µ|2 − 2Z(e)⟨δ, µ⟩

)
∈ IDV .

Applying the standard D-module transpose (−)⊤ and identifying Z(e) with minus the Euler differential
operator1 −E gives

(Z(C))⊤ −
(
(E + dimV )2|µ|2 − 2(E + dimV )⟨δ, µ⟩

)
∈ DV I, (18)

since (−E)⊤ = E + dimV and I is homogeneous.

Lemma 5.8. (Z(C))⊤ = Z(C).

Proof. Because g is semisimple, [g, g] = g. Hence, g acts on V via trace-free matrices. Let ξ ∈ g act
on V via a square matrix A = [aij ]. Then Z(ξ) is the derivation −

∑
i,j ajixi∂xj

. The transpose of this
operator is then

∑
aji∂xj

xi =
∑
ajixi∂xj

+Tr(A) = −Z(ξ). As C arises as evaluation on elements of g
of a homogeneous quadric, (Z(C))⊤ = Z(C).

Proof of Theorem 5.1. Combining Lemma 5.8 and eq. (18) yields

Z(C)−
(
(E + dimV )2|µ|2 − 2(E + dimV )⟨δ, µ⟩

)
∈ DV I.

Taking cosets in τ̂(ρ, X̂, β), we find

0 = Z(C) = (E + dimV )2|µ|2 − 2(E + dimV )⟨δ, µ⟩

= (E + dimV )
(
(E + dimV )|µ|2 − 2⟨δ, µ⟩

)
.

On the other hand, the defining ideal of τ̂(ρ, X̂, β) also contains

Z(e)− dimV + β(e) = −E − dimV + β(e)

So, we deduce

β(e) ∈
{
0,

2⟨δ, µ⟩
|µ|2

}
.

1The minus sign comes from the fact that the action of g on the coordinate ring of V is the contragredient action.
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5.2 Geometric interpretation

We now aim for the following geometric description of the quantity for β(e) from the previous section,
showing the compatibility of the non-vanishing result of τ̂(ρ, X̂, β)|V \0 in Theorem 4.34 with that of

τ̂(ρ, X̂, β) in Theorem 5.1.

Proposition 5.9. If L ⊗ℓ ∼= ω
⊗(−k)
X as G-equivariant line bundles for some integers k, ℓ ̸= 0, then

2⟨δ, µ⟩
⟨µ, µ⟩

=
ℓ

k
.

The proof of this proposition will be based on the correspondence between characters of P and
equivariant line bundles on G/P (where P is parabolic), and identifying the character corresponding
to the canonical bundle ωG/P (Lemma 5.12 below). For this, we first recall some facts about parabolic
subgroups.

Recall ([Hum75, §21.3]) that a closed subgroup P ≤ G is called parabolic if G/P is projective. We
recall some facts about parabolic subgroups.

Lemma 5.10.

(a) If X is a projective homogeneous G-space, then X ∼= G/P for some parabolic subgroup P of G
containing B.

(b) There is an inclusion-preserving bijection between subsets I ⊆ ∆ and parabolic subgroups PI

containing B.2

(c) Φ(PI , T ) = Φ+ ∪ (Φ− ∩ZI).

Proof. (a) This is standard. It uses that every parabolic subgroup contains a Borel subgroup ([Hum75,
Cor. 21.3.B.]), and that all Borel subgroups are conjugate ([Hum75, Th. 21.3]).

(b) [Hum75, Th. 29.3].
(c) [Hum75, Th. 30.1].

Let P be a parabolic subgroup of G containing a maximal torus T . Recall that the characters
λ : T → C∗ which are extendable to P correspond one-to-one with G-equivariant line bundles Lλ,P on
G/P ; see, e.g., [HTT08, §9.11] (although the argument there is for P = B, the same argument works
verbatim with N− replaced by the unipotent radical of the parabolic subgroup of G opposite P ). Note
that there are two common conventions for this correspondence—we choose the convention for which P
acts on the fiber of Lλ,P at P as b · v = λ(b)v.3 In this case, the sheaf of sections Lλ,P of Lλ,P is given
by

Γ(U,Lλ,P ) = {f ∈ Γ(q−1(U),OG) | f(gb) = λ(b)−1f(g) for all g ∈ G, b ∈ P}, (19)

where q : G→ G/P is the quotient map. Since Lλ,P is G-equivariant, there is a G-equivariant structure
on Lλ,P . Although we won’t need to know this structure explicitly, it may help the reader to note that
the induced action of G on Γ(G/P,Lλ,P ) is given by

(g · f)(g′) = f(g−1g′) (g, g′ ∈ G, f ∈ Γ(G/P,Lλ)).

There are many proofs of the following theorem throughout the literature. It is often stated and
proved only for P = B. However, it was originally proven for all parabolic subgroups, e.g. in [Ser54] or
[Bot57, Cor. to Th. V].

Theorem 5.11 (Borel–Weil). If −λ is a dominant weight which is extendable to the parabolic subgroup
P , then Γ(G/P,Lλ,P )

∨ is the irreducible representation of G with highest weight −λ.
2Although we won’t need it, the actual definition of PI can be found directly above Th. 29.2 in [Hum75].
3The other convention is b · v = λ(b)−1v.

39



Lemma 5.12. Let I ⊆ ∆ be a subset of the set of simple roots, and let PI be the corresponding parabolic
subgroup. Define

δI :=
1

2

∑
α∈Φ+\ZI

α.

Then
ωG/PI

∼= L2δI ,PI
.

Proof. The following argument is based on the argument given in the MathOverflow post [Sco].
According to [CG10, Lem. 1.4.9], T ∗(G/PI) is the (unique) G-equivariant vector bundle on G/PI

whose fiber over PI is the PI -module

p⊥I := {ξ ∈ g | ⟨ξ, x⟩ = 0 for all x ∈ pI},

where PI acts via the coadjoint action. But, letting T be a maximal torus of G contained in PI , we have
a sequence of PI -isomorphisms

p⊥I
∼= (g/pI)

∨

∼=

 ⊕
α∈Φ not a root
of PI rel. to T

gα


∨

∼=

 ⊕
α∈−(Φ+\ZI)

gα


∼=

⊕
α∈Φ+\ZI

gα.

Taking the determinant gives the PI -equivariant line bundle whose fiber at PI is the PI -module⊗
α∈Φ+\ZI

gα.

The action of PI on this module is determined by the action of T , and the action of t ∈ T is just
multiplication by ∑

α∈Φ+\ZI

α(t) = 2δI(t).

Thus, ωG/PI
∼= L2δI ,PI

.

We need one more technical lemma before beginning the proof of Proposition 5.9.

Lemma 5.13. Let I ⊆ ∆ be a subset of the simple roots. Then ⟨δ, δI⟩ = ⟨δI , δI⟩.

Proof. Set δ′I := δ − δI = 1
2

∑
α∈Φ+∩ZI α. We want to show that ⟨δ′I , δI⟩ = 0. To begin with, let ΦI be

Φ ∩RI viewed as a subset of the vector space RI. It is immediately clear that ΦI is a root system (in
RI), and that I forms a base of ΦI . Hence, δ′I is the Weyl vector δΦI

of ΦI (with respect to this base).
Moreover, the inner product of two elements of RI is the same as in the ambient vector space t∨ of the
root system Φ. So, the coroots of ΦI are the coroots Hα := 2α/⟨α, α⟩ of Φ for α ∈ ΦI . Therefore, by
[Hal15, Prop. 8.38],

⟨δ′I , Hα⟩ = ⟨δΦI
, Hα⟩ = 1

for all α ∈ I. Hence, for all α ∈ I, we have

2⟨α, δI⟩
⟨α, α⟩

= ⟨Hα, δI⟩

= ⟨Hα, δ − δ′I⟩
= ⟨Hα, δ⟩ − ⟨Hα, δ

′
I⟩

= 1− 1 = 0,
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where the final equality again uses [Hal15, Prop. 8.38]. Therefore, ⟨α, δI⟩ = 0 for all α ∈ I and hence for
all α ∈ RI. In particular, ⟨δ′I , δI⟩ = 0.

Proof of Proposition 5.9. Since X is a projective G-homogeneous space, it is isomorphic by Lemma 5.10

to G/PI for some I. By assumption, L ⊗ℓ ∼= ω
⊗(−k)
X as G-equivariant line bundles. Therefore, since

Pic(X) and therefore PicG(X) is torsion-free, and applying Lemma 5.12,

L ∼= L− k
ℓ 2δI ,P

.

Therefore, by Borel–Weil (Theorem 5.11), the G-representation V = Γ(X,L )∨ has highest weight

µ = −(−2k

ℓ
δI) =

2k

ℓ
δI .

Then

2⟨δ, µ⟩
⟨µ, µ⟩

=
ℓ⟨δ, δI⟩
k⟨δI , δI⟩

=
ℓ⟨δI , δI⟩
k⟨δI , δI⟩

=
ℓ

k
= β(e).

We finish this section with the following well-known fact concering the anticanonical bundle of X =
G/P the proof of which we include for the convenience of the reader.

Lemma 5.14. Assume only that G is reductive. Then X = G/P is a Fano variety.

Proof. By [Jan03, II.4.4], a G-equivariant line bundle L−λ,P on G/P is ample if and only if

⟨λ, α⟩ > 0 for all α ∈ ∆ \ I.

By Lemma 5.12, the anticanonical bundle ω∨X is L−2δI ,P , so we need to check that ⟨δI , α⟩ > 0 holds for
any α ∈ ∆ \ I. The reflection sα : Φ→ Φ given by

sα(β) = β − 2⟨α, β⟩
⟨α, α⟩

α

maps α to −α and permutes Φ+ \ (ZI ∪ {α}) (this follows easily from the defining property of the set of

simple roots ∆). Hence, sα(δI) = δI − α, which means that 2⟨α,δI⟩
⟨α,α⟩ = 1 > 0.

6 Tautological systems associated to homogeneous spaces

The purpose of this section is to gather all the previous results and to apply them to the special case where
we are given a projective variety X with a transitive group action together with a very ample equivariant
line bundle. We obtain a representation on the space of sections, and we can therefore consider the
corresponding tautological system. The non-vanishing results from Section 4 then apply. Moreover, we
show in Section 6.1 a localization property of the corresponding Fourier transform τ̂ , and in Section 6.2 a
property that is in a certain sense dual to the first one, which is why we called “colocalization property”.
These results, combined with the discussion in Section 3 will finally give our main result (Theorem 6.14)
stating that the tautological system τ(ρ, X̂, β), if non-zero, underlies a complex pure resp. a mixed Hodge
module, this is discussed in Section 6.3.

6.1 Localization property of τ̂

The purpose of this and of the following section is to prove a key property of the differential system
τ̂(ρ, X̂, β) concerning its relation to its restriction i+τ̂(ρ, X̂, β), where i : {0} ↪→ V . In this section we
only consider the case where β(e) ∈ C \ Z, whereas in the next section also the case where β(e) ∈ Z is
studied. For the moment, we are working in a slightly more general setup, therefore, we let temporarily
V be any finite-dimensional vector space, and we consider the Euler operator E on V (i.e. the differential
of the scaling action). For λ ∈ C, define Eig(V, λ) to be the full subcategory of Mod(Γ(V,DV )) consisting
of modules M satisfying

M =
⊕

µ∈λ+Z

Mµ, (20)

where Mµ := ker(E − µ) ⊆M .
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Proposition 6.1. Let M ∈ Modqc(DV ). If Γ(V,M ) ∈ Eig(V, λ) for some λ ∈ C \Z, then

M ∼= j+j
+M ,

where j denotes the open embedding of V \ {0} into V .

Proof. Let N := dimV and choose coordinates x1, . . . , xN on V . The distinguished triangle

RΓ{0}(M )→M → j+j
+M

+1−−→

in Db
qc(DV ) (see [HTT08, Prop. 1.7.1(i)]) shows that it suffices to prove RΓ{0}(M ) = 0 in order to

conclude the claim. Since V is affine and M is quasi-coherent, we actually just need to show

Hi
m(M) = 0 for all i,

where M = Γ(V,M ) and m = (x1, . . . , xN ).
Recall that Hi

m(M) may be computed as the cohomology of the Čech complex

0→M →
⊕
i

Mxi
→
⊕
i,j

Mxixj
→ · · · →Mx1···xN

→ 0.

A straightforward application of the definition of eigenvector implies (a) that each term in this complex
is also in Eig(V, λ), and (b) that Eig(V, λ) is closed under taking subquotients. Hence, each Hi

m(M) is
in Eig(V, λ).

Since Hi
m(M) is m-torsion, it remains to show that every m-torsion module in Eig(V, λ) is zero. Let

M ′ be one such module, and assume there is a nonzero n ∈ M ′. Without loss of generality, we may
assume that n ∈M ′µ for some µ ∈ λ+Z and that mn = 0. Then

µn = E · n =

N∑
i=0

xi∂i · n =

N∑
i=0

(∂ixi − 1) · n = −Nn.

Thus, because n ̸= 0, α must be −N—in particular, α, and therefore also λ, must be an integer, which
is false by assumption. Hence, M ′ = 0.

We draw a conclusion of the previous general result that concerns the Fourier transform of tautological
systems as studied in Corollary 4.11, where we only make the assumption that the boundary of the G′-
orbit is reduced to the origin in the vector space V . This is of course satisfied in the case of interest like
in the situation studied in Theorem 4.34.

Corollary 6.2. Let ρ : G′ → GL(V ) be a finite-dimensional rational representation of an algebraic group
of the form G′ = G×C∗, where C∗ acts by scaling elements of V . Let Y ⊆ V be a G′-orbit and let Y be
its closure. Assume that Y \Y = {0}. Let β : g′ → C be a Lie algebra homomorphism with β(e) ∈ C\Z.
Then the DV -module τ̂(ρ, Y , β) from Definition 1.1 satisfies

τ̂(ρ, Y , β) ∼= j+j
+τ̂(ρ, Y , β),

where j denotes the open embedding of V \ {0} into V .

Proof. By Proposition 6.1, it suffices to prove that Γ(V, τ̂(ρ, Y , β)) ∈ Eig(V, β(e)). To do this, let

P =
∑
αγ

cαγx
α∂γ

be a global section of DV . In Γ(V, τ̂(ρ, Y , β)), we have

EP =
∑
αγ

cαγ(|α| − |γ|)xα∂γ +
∑
αγ

cαγx
α∂γE

=
∑
αγ

cαγ(|α| − |γ|)xα∂γ +
∑
αγ

β(e)cαγx
α∂γ

=
∑
αγ

(β(e) + |α| − |γ|)cαγxα∂γ

∈
⊕

µ∈β(e)+Z

τ̂µ.

Thus, Γ(V, τ̂(ρ, Y , β)) ∈ Eig(V, β(e)).
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6.2 Colocalization property of τ̂

In this section, we consider a similar property as just studied, but which also includes the case where
β(e) ∈ Z. It turns out (see example 6.4 below) that in general the DV -module τ̂(ρ, X̂, β) is not equal
to the direct image of its restriction to V \ 0, but to one cohomology group of the properly supported
direct image. In the case where the value of β on e is not an integer, this is consistent with the previous
result since both direct images are equal then.

We work in the setup described before Theorem 4.34, i.e. X ⊆ PV is projective with affine cone X̂
with vanishing ideal I ⊆ OV . Consider the embeddings

X̂ V \ {0} V {0}.j i{0}

Our main result in this section is the following.

Theorem 6.3. If β(e) /∈ Z≤0, then τ̂(ρ, X̂, β) is colocalized, in the sense that the canonical morphism

H0j†j
+τ̂(ρ, X̂, β) −→ τ̂(ρ, X̂, β)

is an isomorphism in Modh(DV ).

Before we discuss the proof of this theorem we show by example that integral parameters may
correspond to systems that are colocalized but not localized. From here on and until the end of this
paragraph, in order to keep the notation light, we write τ̂ for the DV -module τ̂(ρ, X̂, β) that appears in
the theorem above.

Example 6.4. Let X be P1 × P1, where the group G := SL2× SL2 acts transitively via the action on
each factor. Choose the projective embedding induced by the line bundle O(1, 1). The target space is
PV = P3 and X is cut out by f = x1,1x2,2−x2,1x1,2. We write E = x1,1∂1,1+x1,2∂1,2+x2,1∂2,1+x2,2∂2,2.
The interesting β(e) (for which, according to Theorem 4.34, the restriction of τ̂ to V \ {0} is non-zero
and has full support) equals 6 (so that β′(e) = trace(E)− β(e) = −2), and then the defining ideal of τ̂
is generated by f , E − β′(e) = E + 2, and the operators

x2,1∂1,1 + x2,2∂1,2, x1,1∂2,1 + x1,2∂2,2, x1,1∂1,2 + x2,1∂2,2, x1,2∂1,1 + x2,2∂2,1,

θ1,1 + θ1,2 + 1, θ2,1 + θ2,2 + 1, θ1,1 + θ2,1 + 1, θ1,2 + θ2,2 + 1,

where we write θi,j for xi,j∂i,j .
Let P = ∂1,1∂2,2 − ∂2,1∂1,2. It is an easy calculation using the above generators to see that the class

of xi,jP is zero in τ̂ , for i, j ∈ {1, 2}. A computer computation shows that P is not zero in τ̂ , and so
τ̂ contains a submodule K of holonomic length one that is supported at the origin. In particular, we
certainly have τ̂ ̸= j+j

+τ̂ in this case.
Inspection shows that there is a natural DV -module map from τ̂ to the local cohomology sheaf

H = H1
X̂
(OV ) that sends the coset of 1 to the coset of 1/f . Notice that this map is not surjective,

since H ∼= OV (∗X̂)/OV is generated by 1/f2, due to the fact that the Bernstein-Sato polynomial of f is
(s+ 1)(s+ 2).

The image of τ̂ → H is the Kashiwara–Brylinski module B attached to f (i.e. the module obtained
as ι̂†+OX̂\{0} ∈ Mod(DV ), recall that ι̂ : L

∨,∗ ∼= X̂ \{0} ↪→ V is the composition of the closed embedding

i : X̂ \ {0} ↪→ V \ {0} with the canonical open embedding j : V \ {0} ↪→ V from above), and so B is
in particular simple and self-dual. The cokernel C = H/B is the DV -module generated by 1/f2; it is
supported at the origin and of holonomic length one. The kernel is the module K above. We thus arrive
at the following sequence of DV -modules.

0 −→ K −→ τ̂ −→ H −→ C −→ 0.

It is automatic that DK ∼= C since both are length one and supported at the origin, but one can also
verify that DH ∼= τ̂ . Moreover, it follows from the fact that OV (∗X̂) is localized along X̂ that it is also
localized at {0}, i.e. that we have j+j

+OV (∗X̂) = OV (∗X̂). Then since j+j
+OV = OV we get that

j+j
+H ∼= H, and thus the module Dτ̂ also satisfies

j+j
+Dτ̂ ∼= Dτ̂ .

♢
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The proof of Theorem 6.3 will be given after several intermediate steps. First we recall that we
have the algebra AV (see Definition 4.14), which is the universal enveloping algebra of the Lie algebroid

OV ⊗C g′. It comes with a (in general non-surjective) algebra homomorphism Z̃V : AV → DV which
extends the map ZV as defined in Lemma 4.1. Then we consider the left AV -module

τ̂A := AV /AV I + AV (ξ − β′(ξ) | ξ ∈ g′).

From the right exactness of the tensor product we get

τ̂ = DV ⊗AV
τ̂A = H0

(
DV ⊗L

AV
τ̂A
)
,

using that Z̃V makes DV into a right AV -module. We first have the following comparison result.

Lemma 6.5. If Hk(ωV ⊗L
AV

τ̂A ) = 0 for k = 0,−1, then also Hk(DR τ̂) = Hk(ωV ⊗L
DV

τ̂) = 0 for
k = 0,−1.

Proof. Consider the Grothendieck spectral sequence for the composition of functors ωV ⊗DV
− and

DV ⊗AV
−, with E2-term

Ep,q
2 = Hp

(
ωV ⊗L

DV
Hq
(
DV ⊗L

AV
τ̂A
))

=⇒ Hp+q
(
ωV ⊗L

AV
τ̂A
)
.

We clearly have that E0,0
2 = H0(ωV ⊗L

AV
τ̂A ) and moreover, because we are dealing with the second

page of a third quadrant spectral sequence, E−1,02 injects into H−1(ωV ⊗L
AV

τ̂A ). Hence, under the
assumption of the lemma, we obtain

E0,0
2 = H0(ωV ⊗L

DV
τ̂) = 0 and E−1,02 = H−1(ωV ⊗L

DV
τ̂) = 0.

Next consider the following adjuction triangle

j†j
+τ̂ −→ τ̂ −→ (i{0},+i

†
{0})τ̂ [dimV ]

+1−→ (21)

and the associated exact sequence

0 −→ H−1((i{0},+i
†
{0})τ̂ [dimV ]) −→ H0(j†j

+τ̂) −→ τ̂ −→ H0((i{0},+i
†
{0})τ̂ [dimV ])

We would like to show that the left- and the rightmost terms in this sequence vanish. Since clearly i{0},+
is an exact functor, it suffice to show that

Hk(i†{0}τ̂ [dimV ]) = 0

for k = 0,−1. To that end, we apply the functor aV,+ (where aV : V → {pt} is the projection) to the
triangle (21), this yields

aV,+j†j
+τ̂ −→ aV,+τ̂ −→ i†{0}τ̂ [dimV ]

+1−→ (22)

since

aV,+i{0},+i
†
{0}τ̂ [dimV ] ∼= (aV ◦ i{0})+i†{0}τ̂ [dimV ] ∼= a{0},+i

†
{0}τ̂ [dimV ] ∼= i†{0}τ̂ [dimV ]

as elements in Db(C).
Now we have the following piece of the associated cohomology sequence of the triangle (22)

H−1aV,+τ̂ −→ H−1i†{0}τ̂ [dimV ] −→ H0aV,+j†j
+τ̂ −→ H0aV,+τ̂ −→ H0i†{0}τ̂ [dimV ] −→ 0. (23)

Here zero on the right most term comes from the vanishing

H1aV,+j†j
+τ̂ = 0,

which holds since both functors aV,+ and j† are right exact. We now claim
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Lemma 6.6. The map

H−1aV,+τ̂ −→ H−1i†{0}τ̂ [dimV ]

is an isomorphism.

Proof. It can be shown more generally that under the assumption made here, we have an isomorphism

aV,+τ̂ −→ i†{0}τ̂ [dimV ]

in Db(C). In order to see this, we apply [Ste19, Lemma 4.4] (which is based on an earlier result in
[RW19, Lemma 3.3]), when seeing aV : V → {pt} as a bundle over the point {pt}. Then it is clear
that this map is fibered in the sense of [Ste19, Definition 4.1]. It therefore remains to check that the
DV -module τ̂ is twistedly C∗-quasi-equivariant (as defined in [Ste19, Definition 4.2]). This is a condition
that depends only on the restriction j+τ̂ , and this restriction has support on X̂ \{0}. Recall that we have
the isomorphism L∗ ∼= X̂ \ {0}, obtained from composing the restriction to L∨,∗ of the blow-up L∨ → X̂

with the fiberwise isomorphism inv: L∗
∼=→ L∨,∗. It is therefore sufficient to show that ι+τ̂ is twistedly

C∗-quasi-equivariant with respect to the C∗-action in the fibres of L → X, where ι is the composition
of j : V \ {0} ↪→ V with the closed embedding X̂ \ {0} ↪→ V \ {0} and with the above isomorphism
L∗ ∼= X̂ \ {0}.

It follows from Theorem 4.34 that this restriction is either zero, in which case the equivariance

property we are after is trivially satisfied, or else equals Oℓ/k
L∗ . It is an easy exercise to check (e.g., locally

over trivializing neighborhoods) that Oℓ/k
L∗ is twistedly C∗-quasi-equivariant.

By using the exact sequence (23) as well as the previous lemma, Theorem 6.3 is proved once we
have shown that Hk(aV,+τ̂) = 0 for k = 0,−1. But clearly aV,+τ̂ = aV,∗DR(τ̂) since aV is an affine
morphism. Therefore, by Lemma 6.5, we are left to show the following.

Proposition 6.7. Using the above notation, we have

Hk(ωV ⊗L
AV

τ̂A ) = 0

for k = 0,−1.

For this, we will need some further preparations. We start with an algebraic property of the left
AV -module AV /AV I.

Lemma 6.8. 1. I ⊆ OV has naturally the structure of a left AV -module (and consequently, also OX̂

has)

2. For any ξ ∈ g′, we have

AV · I · ξ ⊆ AV · I

as subsets of AV . Consequently, AV ·I is a two-sided ideal, and AV /AV I is also a right A -module
(i.e., it is sheaf of rings).

Proof. 1. Clearly, OV is a left AV -module through Z̃V : AV → DV . We need to show that this left
action leaves I invariant. Let ξ ∈ g′ and let g ∈ I be given. Consider the following piece of the
dual to the conormal sequence of X̂ ⊆ V

0 −→ DerC(OX̂) −→ DerC(OV )⊗OV
OX̂

α−→ HomOV
(I,OX̂),

Since X̂ ⊆ V is a G′-variety, ZV (ξ) descends to a derivation of OX̂ , i.e., it lies in the kernel of the
map α. Therefore ZV (ξ)(g) ∈ I.

2. Since AV is the universal envelopping algebra of the Lie algebroid OV ⊗C g′, for any g ∈ OV , the
commutator

ξ · g − g · ξ
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must be equal to the result of applying the anchor map to ξ, and then applying the correspondig
derivation to g. But the anchor map OV ⊗C g′ → ΘV is nothing but the scalar extension of ZV , so
that ξ · g − g · ξ = ZV (ξ)(g), which lies in I by point 1. Consequently

g · ξ = ξ · g − ZV (ξ)(g) ∈ AV · I

for g ∈ I, as required.

We next consider a homological construction that can be considered as a generalization of both
the Spencer complex in D-module theory (see, e.g. [HTT08, Lemma 1.5.27.]) and of the Euler-Koszul
complex as defined in the theory of hypergeometric differential systems ([MMW05, Section 4]) and which
is closely related to Lie algebra cohomology resp. homology (see, e.g., [HS97, Section VII.4]). We therefore
call it the Euler-Koszul-Chevalley-Eilenberg-Spencer complex. Let first N be a right AV -module. Define

S−ℓ(N ) := N ⊗OV

ℓ∧
OV

(OV ⊗C g′) = N ⊗C
ℓ∧
g′,

where the differential is as follows

δ−ℓ : S−ℓ(N ) −→ S−ℓ+1(N )

m⊗ (ξ1 ∧ . . . ∧ ξℓ) 7−→
∑ℓ

i=1(−1)i−1m(ξi − β′(ξi))⊗ (ξ1 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξℓ)+∑
1≤i<j≤ℓ

(−1)i+jm⊗ ([ξi, ξj ] ∧ ξ1 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξ̂j ∧ . . . ∧ ξℓ).

where the right AV -module structure on N is used in the first term of the differential when writing
m(ξi − β′(ξi)). In general, S•(N ) will be a complex of sheaves of C-vector spaces only.

We will apply this construction several times, but in particular in the following more special situation.
LetM be a left AV -module (e.g. OX̂). Consider the sheaf

AV ⊗OV
M.

We view this sheaf as an (AV ,AV )-bimodule as follows: The left AV -action is given by

b(a⊗m) = ba⊗m.

The right action is induced by

(a⊗m)f = af ⊗m (f ∈ OV )

(a⊗m)ξ = aξ ⊗m− a⊗ ξm (ξ ∈ g′).

It is easy to check that this construction extends to a functor from left AV -modules to (AV ,AV )-
bimodules.

To consider a specific example, we can takeM := OX̂ , which is a left AV -module by Lemma 6.8 above.
Let ψ : AV ⊗OV

OX̂ → AV /AV I, a⊗ g 7→ a · g be the canonical isomorphism of left AV -modules. Now
by the previous construction, the left hand side is also a right AV -module, and by invoking Lemma 6.8
again, so is the right hand side. Then the morphism is also an isomorphism of right AV -modules: Since
g′ kills the element 1 of OX̂ , we have (for a ∈ AV , g ∈ OX̂ and ξ ∈ g′)

ψ((a⊗ g)ξ) = ψ((ag ⊗ 1)ξ)

= ψ(agξ ⊗ 1− ag ⊗ (ξ · 1))
= ψ(agξ ⊗ 1)

= agξ

= ag · ξ
= ψ(a⊗ g)ξ,
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as claimed.
We now apply the construction of the complex S•(−) (taking as input a right AV -module N ) to the

particular case where N := AV ⊗OV
M, i.e., we put for all ℓ ∈ Z

C−ℓ(M) := S−ℓ(AV ⊗OV
M),

yielding a complex (C•, δ). It is readily checked that since AV ⊗OV
M is also a left AV -module, the

differentials δ−ℓ are now left AV -linear. Again, it is an easy exercise to see that this construction is
functorial, so that C•(−) yields an exact functor from the category of left AV -modules to the category
of complexes of left AV -modules.

Pursuing the above example whereM = OX̂ , we see immediately that

H0(C•(OX̂)) ∼= τ̂A .

We also have the following important homological property of this complex.

Lemma 6.9. For any left AV -module M, C•(M) is a resolution of H0(C•(M)) by left AV -modules
(which in general are not AV -free though). In particular, for M = OX̂ , we obtain that C•(OX̂) is a
resolution of τ̂A by left A -modules.

Proof. We follow a standard strategy by filtering C•(M) by degree using the natural filtration on AV .
More precisely, using AV = OV ⊗C Ug′, we set FkAV := OV ⊗C Fk(Ug′), where F•(Ug′) is the standard
filtration on the universal enveloping algebra. By the Poincaré-Birkhoff-Witt theorem, we have

Gr•AV
∼= OV ⊗C Sym•(g′).

We consider the induced filtration F•(AV ⊗OV
M) = F•(AV )⊗OV

M on the left AV -module AV ⊗OV
M.

Then we have the following isomorphism of OV ⊗C Sym•(g′)-modules

Gr•(AV ⊗OV
M) ∼= Gr•(AV )⊗OV

M∼= Sym•(g′)⊗CM.

Then we consider the filtration on C•(M) defined as

FkC−ℓ(M) := Fk+ℓ(AV ⊗OV
M)⊗C

ℓ∧
g′.

This makes F•C•(M) into a filtered complex, and by the usual arguments one checks that

GrF• C•(M) ∼= Kos•(M⊗C Sym•(g′), (ξ1, . . . , ξdim(g′))),

for some basis (ξ1, . . . , ξdim(g′)) of the Lie algebra g′. Since clearly ξ1, . . . , ξdim(g′) is a regular sequence

on M⊗C Sym•(g′), we obtain Hi(GrF• C•(M)) = 0 for i < 0. Then by a general argument (see, e.g.
[SST00, Theorem 4.3.5]) it follows that

H0(Gr•(C•(M))) = Gr•H
0(C•(M)).

We have therefore shown that GrF• C•(M) is a resolution of Gr•H
0(C•(M)), but then the original

complex C•(M)) is a resolution of H0(C•(M)), which is the first statement of the lemma. Since, as
remarked above, we have H0C•(OX̂) ∼= τ̂A , C•(OX̂) is a resolution of τ̂A by left AV -modules.

The terms of the complex C•(M) are not AV -free in general. This is cured by the following construc-
tion.

Lemma 6.10. There exists a finite resolution (F•(M), d) ↠M by left AV -modules that are free over
OV .

Proof. We first construct via induction an infinite resolution G• ofM by left AV -modules that are free
(but possibly of infinite rank) over OV .
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Let W 0 be the g′-submodule generated by a global OV -generating set ofM. Then G0 := OV ⊗CW 0

is a left AV -module via

f · (g ⊗ w) = (fg)⊗ w (f ∈ OV ),

ξ · (g ⊗ w) = (ZV (ξ)(g))⊗ w + g ⊗ (ξ · w) (ξ ∈ g′).

The obvious map G0 → M is surjective and AV -linear. Repeating this procedure with ker(G0 → M),
and continuing in that way, we get an infinite resolution G• ofM of the required type.

We now construct F•(M): Since OV has finite global dimension (say equal to n), im(G−n → G−n+1)
is OV -projective (see, e.g., [Sta22, Lemma 00O5]) and therefore OV -free. Thus,

F−i(M) :=


G−i, if i < n,

im(G−n → G−n+1), if i = n,

0, if i > n.

with the differential induced from G• works.

Remark 6.11. For what follows, a resolution of modules that have possibly infinite rank over OV

as just constructed is sufficient. However, it is actually possible to obtain a resolution by finite rank
OV -modules under the additional assumption that M is graded, and finitely generated over OV by
homogeneous elements such that the grading is compatible with the left AV -structure onM. This is in
particular the case for M = OX̂ , which is the only case that we will use below. Namely, under these
assumptions, the g′-submodule W 0 constructed in each step is then necessarily contained in a finite
number of homogeneous components of M, i.e. in a finite dimensional vector space. This suffices to
obtain a free OV -module of finite rank G0 as above, which is again graded in a compatible way with the
left AV -action, and then one argues again by induction. ♢

In the sequel, we specialize to the case M = OX̂ . According to the previous lemma, by applying
the functor C•(−) to the OV -free resolution F•(OX̂) ↠ OX̂ by left AV -modules, we obtain the double
complex

K•,• := C•(F•(OX̂))

and its associated total complex Tot•(K•,•). Then Tot•(K•,•) provides a resolution of τ̂A by free left
AV -modules (of possibly infinite rank). Therefore, we have

ωV ⊗L
AV

τ̂A ∼= ωA ⊗AV
Tot•(K•,•) ∼= Tot•(ωV ⊗AV

K•,•)

Consider the spectral sequence associated to the double complex ωV ⊗AV
K•,• with E1-term given

by first taking vertical cohomology, i.e.

Ep,q
1 := Hq(ωV ⊗AV

Cp(F•(OX̂))) =⇒ Hp+q(ωV ⊗L
AV

τ̂A ).

Then we have the following

Lemma 6.12. The above sequence collapses at the E1-term, and we have

ωV ⊗L
AV

τ̂A ≃ (S•(ωV ⊗OV
OX̂), δ),

where we consider the right module structure on N = ωV ⊗OV
OX̂ coming from the tensor product of

the right AV -module ωX with the left AV -module OX̂ . Explicitly, we have

Sℓ(ωV ⊗OV
OX̂) := ωV /IωV ⊗C

−ℓ∧
g′,

and where the differentials are

δ−ℓ :
ωV

IωV
⊗C

−ℓ∧
g′ −→ ωV

IωV
⊗C
−ℓ+1∧

g′

(f · vol)⊗ (ξ1 ∧ . . . ∧ ξℓ) 7−→ ℓ∑
i=1

(−1)i−1(−LieZV (ξi)
−β′(ξi))(f ·vol)⊗(ξ1∧...∧ξ̂i∧...∧ξℓ)+∑

1≤i<j≤ℓ

(−1)i+j(f ·vol)⊗([ξi,ξj ]∧ξ1∧...∧ξ̂i∧...∧ξ̂j∧...∧ξℓ)
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Proof. According to the above construction, we have

Hq(ωV ⊗AV
Cp(F•(OX̂)))

=

ker

(
ωV ⊗AV

(AV ⊗OV
Fq(OX̂))⊗C

p∧
g′, id⊗ id⊗dq ⊗ id

)

im

(
ωV ⊗AV

(AV ⊗OV
Fq−1(OX̂))⊗C

p∧
g′, id⊗ id⊗dq−1 ⊗ id

)

= ωV ⊗OV
Hq(F•(OX̂))⊗C

p∧
g′

=

{
0, if q < 0,

ωV ⊗OV
OX̂ ⊗C

∧p
g′, if q = 0.

(recall that d is the differential of the complex F•(OX̂)) from which it is obvious that the spectral sequence

collapses, and that the induced differential δ−ℓ : Sℓ(ωV ⊗OV
OX̂) = Eℓ,0

1 → Eℓ+1,0
1 = Sℓ+1(ωV ⊗OV

OX̂)
is as indicated.

Using all these preliminaries, we finally obtain the vanishing of the two de Rham cohomology groups
we are interested in.

Proof of Proposition 6.7. It remains to show that under the assumptions of the proposition, we have
Hk(S•(ωV ⊗OV

OX̂)) = 0 for k = 0,−1. Let us first notice that the complex S•(ωV ⊗OV
OX̂) is

naturally graded by the grading of OX̂ and of OV (by putting deg(vol) := dim(V )) and by setting
deg(g′) := 0. Then it is easily verfied that the morphism ZV is homogeneous of degree 0, and therefore
also the differentials δ−ℓ are so. Consequently, it suffices to calculate the cohomology of the graded parts
of S•(ωV ⊗OV

OX̂).
The relevant maps in this complex are as follows:

δ−1 :
ωV

IωV
⊗C g′ −→ ωV

IωV

(f · vol)⊗ ξ 7−→ (−LieZV (ξ)−β′(ξ))(f · vol)

δ−2 :
ωV

IωV
⊗C

2∧
g′ −→ ωV

IωV
⊗C g′

(f · vol)⊗ ϑ ∧ η 7−→ (−LieZV (ϑ)−β′(ϑ))(f · vol)⊗ η + (LieZV (η) +β
′(η))(f · vol)⊗ ϑ

−(f · vol)⊗ [ϑ, η]

= δ−1((f · vol)⊗ ϑ)⊗ η − δ−1((f · vol)⊗ η)⊗ ϑ− (f · vol)⊗ [ϑ, η].

In order to describe these morphisms, first notice that for any θ ∈ g′, we have

LieZV (θ)(vol) = Lie−
∑

i,j dρ(θ)jixi∂xj
(vol) = −

∑
i,j

dρ(θ)ji Liexi∂xj
(vol)

= −
∑
i,j

dρ(θ)jiδij · vol = −trace(dρ(θ)) · vol .

We thus get(
LieZV (θ) +β

′(θ)
)
(f · vol) =

(
ZV (θ)(f)− f · trace(dρ(θ)) + β′(θ)︸ ︷︷ ︸

=trace(dρ(θ))−β(θ)

·f
)
· vol

= (ZV (θ)(f)− β(θ)f) · vol

(24)
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After these preliminaries, let us first show that H0(S•(ωV ⊗OV
OX̂)) = 0, i.e., that the the morphism

δ−1 is surjective. According to Lemma 4.3. of our paper, for ξ = e ∈ g′, we have

ZV (e) = −E := −
dimV∑
i=1

xi∂xi
,

when x1, . . . , xdim(V ) are coordinates on V . We thus have

δ−1((f · vol)⊗ e) = (−LieZV (e)−β′(e))(f · vol) = (E(f) + β(e)f) · vol

Since E(f) = d · f for f homogeneous of (non-negative) degree d, the fact that β(e) /∈ Z≤0 shows that
δ−1 is surjective, hence H0(S•(ωV ⊗OV

OX̂)) = 0.
The vanishing of H−1(S•(ωV ⊗OV

OX̂)) will similarly be shown in each degree of the complex.
Therefore, suppose that we have homogeneous elements fi ∈ OX̂ all of which have the same degree
d ∈ Z≥0 and ξi ∈ g′ for i = 1, . . . , r such that

δ−1
( r∑

i=1

(fi · vol)⊗ ξi
)

= 0.

By assumption, we have d+ β(e) ̸= 0. Then it follows (using [e, ξi] = 0) that

δ−2
( r∑

i=1

(
fi

d+ β(e)
· vol)⊗ e ∧ ξi

)
=

r∑
i=1

δ−2
(

fi
d+ β(e)

· vol⊗e ∧ ξi
)

=

r∑
i=1

(
δ−1
(
(

fi
d+ β(e)

· vol)⊗ e
)
⊗ ξi

)
−

r∑
i=1

δ−1
(
(

fi
d+ β(e)

· vol)⊗ ξi
)
⊗ e

=

r∑
i=1

(
δ−1
(
(

fi
d+ β(e)

· vol)⊗ e
)
⊗ ξi

)
− 1

d+ β(e)

r∑
i=1

δ−1
(
(fi · vol)⊗ ξi

)
︸ ︷︷ ︸

=0

⊗e

=

r∑
i=1

(
E(fi) + β(e)fi

d+ β(e)
· vol⊗ξi

)
,

so that
∑r

i=1(fi · vol)⊗ ξi ∈ im(δ−2), thus showing H−1(S•(ωV ⊗OV
OX̂)) = 0.

The next statement summarizes the results obtained so far in Section 6. We consider the situation as
described before Theorem 4.34 and we would like to describe how the DV -module τ̂(ρ, X̂, β) is related
to its restriction to V \ {0}. We only state the results under the simplifying assumption that G is
semi-simple, since this is the main case of interest and since it allows us to use the results proved in
Section 5. Recall that under the assumption that G (and cosequently its Lie algebra g) is semi-simple,
we necessarily have β|g = 0.

Corollary 6.13. In the above situation, assume that τ(ρ, X̂, β) ̸= 0. Then we have:

1. β(e) ∈ Q≥0.

2. If β(e) = 0, then τ(ρ, X̂, β) is a free OW -module of finite positive rank.

3. If β(e) ∈ Q>0, then we have an isomorphism in Modh(DV )

H0j†j
+τ̂(ρ, X̂, β)

∼=−→ τ̂(ρ, X̂, β)

4. If β(e) ∈ Q>0 \Z>0, then we have isomorphisms in Modh(DV )

j+j
+τ̂(ρ, X̂, β)

∼=−→ τ̂(ρ, X̂, β),

and

j+j
+τ̂(ρ, X̂, β) ∼= j†j

+τ̂(ρ, X̂, β)
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in particular, we haveHi(j⋆j
+τ̂(ρ, X̂, β)) = 0 for i ̸= 0 and for ⋆ ∈ {+, †} in this case. Furthermore,

τ(ρ, X̂, β) is simple.

Proof. 1. This is exactly the statement of Corollary 5.2.

2. It has been shown in Lemma 5.14 that X is Fano. This implies by Theorem 4.34 that if β(e) = 0,
then necessarily τ̂(ρ, X̂, β)|V \{0} = 0. Therefore, τ̂(ρ, X̂, 0) has support in the origin in V and

consequently, τ(ρ, X̂, 0) is a free OW -module (of positive rank by the assumption τ(ρ, X̂, β) ̸= 0).
Notice that the non-vanishing of τ(ρ, X̂, β) ̸= 0 is automatic if β(e) = 0: in this case, any constant
function on W is a (classical) solution to τ(ρ, X̂, 0), since it is annihilated by any operator in the
denominator.

3. This follows directly from Theorem 6.3.

4. The isomorphism j+j
+τ̂(ρ, X̂, β) ∼= τ̂(ρ, X̂, β) is exactly the content of Corollary 6.2 (applying it

for Y = X̂ \{0} and Y = X̂). Moreover, the second isomorphism is obviously true if τ̂(ρ, X̂, β) = 0.
Otherwise, we must have by the first isomorphism that j+τ̂(ρ, X̂, β) ̸= 0, but then by Theorem 4.34
we know that

j+τ̂(ρ, X̂, β) ∼= i′+O
ℓ/k
L∗

with β(e) = ℓ/k. Since i′ is proper, we are therefore left to show that

j+i
′
+O

ℓ/k
L∗
∼= j†i

′
†O

ℓ/k
L∗ , (25)

but this follows from the proof of Proposition 3.8, points 1. and 3., by noticing that we have
ι̂ = j ◦ i′ ◦ inv−1 : L∨,∗ ↪→ V . It follows from Eq. (25) that τ̂(ρ, X̂, β) is an intermediate extension

of i′+O
ℓ/k
L∗ . Since i′+O

ℓ/k
L∗ is simple, we conclude that τ̂(ρ, X̂, β) is simple as well. Since FLV is an

equivalence of categories the claim follows.

6.3 Tautological systems as mixed Hodge modules

The purpose of this section is to finally achieve the functorial construction of tautological systems an-
nounced in the introduction (more specifically, in Theorem 1.2), by combining the results in Section 3.3,
the description of τ̂|V \{0} from Theorem 4.34 as well as the localization resp. colocalization properties of
τ̂ summarized in Corollary 6.13 above.

Let us recall once again the setup we are working with: We let X be a projective variety and we
consider a transitive action of a reductive connected algebraic group G on X. We let L→ X be a very
ample G-equivariant line bundle. We extend the group action on X and L to a an action of G′ := C∗×G
by letting the C∗-factor act trivially on X and by inverse scaling in the fibers of L. We consider the
G′-representation V := H0(X,L )∨ and the equivariant closed embedding X ↪→ PV defined by |L |. Let
X̂ ⊆ V be the affine cone of X in V , and we have an isomorphism X̂ \{0} ∼= L∨,∗ by identifying L∨ with
the blow-up of X̂ at the origin. We write ι̂ : L∨,∗ ∼= X̂ \ {0} → V for the locally closed embedding given
as the composition of the closed embedding i : X̂ \ {0} ↪→ V \ {0} with the canonical open embedding
j : V \ {0} ↪→ V . Together with the isomorphism inv: L∗ → L∨,∗ given by inverting fibers, we obtain a
locally closed embedding ι : L∗ ↪→ V defined by ι := ι̂ ◦ inv.

For the convenience of the reader, we summarize the various maps that occur by extending the
diagram (14) from Section 4.4.

L L∗

X̂ \ {0} V \ {0} V

Bl{0}(X̂) ∼= L∨ L∨,∗

jL

inv ∼=

i′

ι

i j

jL∨

∼=

ι̂

(26)
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We let, as before, β : g′ → C be a Lie algebra homomorphism satisfying β|g ≡ 0. Denote W := V ∨.

Theorem 6.14. Under the above hypotheses, the following statements hold.

1. Assume that β(e) = ℓ/k ∈ Q \ Z. The tautological system τ(ρ, X̂, β) is non-zero if and only if

L ⊗ℓ ∼= ω
⊗(−k)
X as G-equivariant line bundles. In this case, we have isomorphisms

τ(ρ, X̂, β) ∼= FLV (ι+Oℓ/k
L∗ ) ∼= FLV (ι†Oℓ/k

L∗ )

in Mod(DW ), and the DW -module τ(ρ, X̂, β) underlies a complex pure Hodge module on W of
weight dim(X) + dim(W ). Moreover, τ(ρ, X̂, β) is simple, and, consequently, the local system
associated to τ(ρ, X̂, β)|W\Sing(τ(ρ,X̂,β)) is irreducible.

2. If β(e) ∈ Z>0, then τ(ρ, X̂, β) is non-zero if and only if L ⊗β(e) ∼= ω∨X as G-equivariant line
bundles, in which case we have an isomorphism

τ(ρ, X̂, β) ∼= FLV (H0ι†OL∗)

in Mod(DW ). Then the DW -module τ(ρ, X̂, β) underlies an element of MHM(W ) with weights in
{dim(W ) + dim(X), dim(W ) + dim(X) + 1}.

Proof. Under the assumptions of the theorem, we have in both cases that

j+τ̂(ρ, X̂, β) ∼=

{
i′+O

ℓ/k
L∗ if L ⊗ℓ ∼= ω

⊗(−k)
X ,

0 otherwise

by Theorem 4.34 (with ℓ = β(e), k = 1 in case 2), notice that we had implicitly identified L∗ with X̂ \{0}
in Theorem 4.34.

We now distinguish the two cases.

1. Since ℓ/k /∈ Z, we know from Corollary 6.2 that

τ̂(ρ, X̂, β) ∼= j+j
+τ̂(ρ, X̂, β).

Therefore, since ι = j ◦ i′, we conclude that

τ̂(ρ, X̂, β) ∼=

{
ι+Oℓ/k

L∗ if L ⊗ℓ ∼= ω
⊗(−k)
X ,

0 otherwise.

As we have FLV (τ̂(ρ, X̂, β)) = τ(ρ, X̂, β) by Definition 1.1, we obtain

τ(ρ, X̂, β) ∼=

{
FLV (ι+Oℓ/k

L∗ ) if L ⊗ℓ ∼= ω
⊗(−k)
X ,

0 otherwise,

as required. The fact that FLV (ι+Oℓ/k
L∗ ) ∼= FLV (ι†Oℓ/k

L∗ ) is simply the D-module version of Propo-

sition 3.8, point 3. Then it follows as in Corollary 6.13 that τ(ρ, X̂, β) is a simple DW -module,
and in particular that the local system (and the monodromy representation) of its restriction to
its smooth part is irreducible.

For the second statement, assume L ⊗ℓ ∼= ω
⊗(−k)
X and recall from Proposition 3.8 that

FLV (ι̂+O−ℓ/kL∨,∗ ) ∼= aW,+ev
†jL,†Oℓ/k

L∗

as elements inDb
h(DW ), using the notations from Proposition 3.8. Since we have inv+O−ℓ/kL∨,∗

∼= Oℓ/k
L∗ ,

we get

FLV (ι+Oℓ/k
L∗ ) ∼= aW,+ev

†jL,†Oℓ/k
L∗

in Db
h(DW ). However, as we have just proved, this is actually a single degree complex isomorphic

to the tautological system τ(ρ, X̂, β). Hence it follows from the second statement of Proposition 3.8
that this DW -module underlies the pure complex Hodge module

HMℓ/k
L = H0(HMℓ/k

L ) = aW,∗ev
∗jL,!

HC
ℓ/k
L∗ [dimW − 1]

which has weight dim(X) + dim(W ).
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2. Since β(e) /∈ Z≤0, we know from Theorem 6.3 that

τ̂(ρ, X̂, β) ∼=

{
H0j†j

+τ̂(ρ, X̂, β) if L ⊗β(e) ∼= ω∨X ,

0 otherwise.

Hence,

τ̂(ρ, X̂, β) ∼=

{
H0j†i

′
+OL∗ if L ⊗β(e) ∼= ω∨X ,

0 otherwise,

using Oβ(e)
L∗

∼= OL∗ since β(e) ∈ Z. Since i′ is a closed embedding, we have i′+
∼= i′†, so, using

ι = j ◦ i′, we conclude the first statement.

The second statement then follows again from Proposition 3.8, points 1. and 2. More precisely, we
had shown there that FLV (ι̂†OL∨,∗) underlies H,!ML ∈ MHM(W ), so that

τ(ρ, X̂, β) ∼= FLV (H0ι†OL∗) ∼= FLV (H0ι̂†OL∨,∗) ∼= H0 FLV (ι̂†OL∨,∗)

underlies H0(H,!ML) ∈ MHM(W ). The weight estimate then follows directly from Proposition 3.8,
point 4. for the case k = 0.

As a corollary, we solve the holonomic rank problem from [BHL+14, Conjecture 1.3.] in general (i.e.
for all homogeneous spaces and all possible equivariant line bundles that give rise to non-zero tautological
systems). Recall from the discussion before Proposition 3.9 that U := (W × X) \ ev−1(0) ⊆ W × X
and that aU : U → W denotes the restriction of the first projection aW : W × X → W . Moreover, for
any λ ∈ W , we write iλ : {λ} ↪→ W for the corresponding closed embedding, we let Uλ ⊂ X be the

complement of the zero locus of the section λ : X → L, and we denote by Cβ
λ the complex local system

on Uλ that underlies the pure complex Hodge module λ∗|Uλ

HC
β
L∗ [−1].

Corollary 6.15. 1. Under the assumptions of Theorem 6.14, point 1., i.e., β(e) = ℓ/k ∈ Q \ Z and

L ⊗ℓ ∼= ω
⊗(−k)
X as G-equivariant line bundles, we have isomorphisms in Modh(DW )

τ(ρ, X̂, β) ∼= aU,†ev
+
|UO

−ℓ/k
L∗

∼= aU,+ev
+
|UO

−ℓ/k
L∗ .

As a consequence, we have an isomorphism of vector spaces

Hm(i+λ τ(ρ, X̂, β))
∼= Hdim(X)+m(Uλ, C

−ℓ/k
λ ) (27)

resp.

Hm(i†λτ(ρ, X̂, β))
∼= Hdim(X)+m

c (Uλ, C
−ℓ/k
λ ) (28)

for all m ∈ Z and for all λ ∈W .

2. If we assume that the hypotheses of Theorem 6.14, point 2., hold true (i.e., β(e) ∈ Z>0 and
L ⊗β(e) ∼= ω∨X as G-equivariant line bundles), then we have an isomorphism

τ(ρ, X̂, β) ∼= H0aU,+ev
+
|UOL∗ .

In particular, we obtain for all λ ∈W an isomorphism

H0(i+λ τ(ρ, X̂, β))
∼= Hdim(X)(Uλ, C). (29)

3. The holonomic rank of τ(ρ, X̂, β) is given in the two cases as

dimHdim(X)
c (Uλ,C

−ℓ/k
λ ) ≃ dimHdim(X)(Uλ,C

−ℓ/k
λ ) if β(e) ∈ Q \Z,

resp.
dimHdim(X)(Uλ,C) if β(e) ∈ Z>0,

for any value λ ∈W that lies outside the singular locus of τ(ρ, X̂, β).
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Notice that H0(i+λ τ(ρ, X̂, β)) is the space dual to the space of (classical) solution of τ(ρ, X̂, β) at the
point λ, so that that Eq. (27) and Eq. (29) also comprise and generalize [HLZ16, Corollary 2.3].

Proof. 1. Using the previous Theorem 6.14, the first statement is exactly the D-module version of
Proposition 3.9, 1. Similarly, the second statement follows from Proposition 3.9, 2.

2. The first statement is obtained by combining Theorem 6.14 with Proposition 3.9, 1. In order to get
the second one, we apply the functor H0i+λ to the isomorphism τ(ρ, X̂, β) ∼= H0aU,+ev

+
|UOL∗ . This

shows that H0i+λ τ(ρ, X̂, β) sits at the origin of the E2-term of the (third quadrant) Grothendieck
spectral sequence for the composition of the functors i+λ and aU,+. Therefore, it is isomorphic to
the (0, 0)-spot of the abutement, which is

H0i+λ aU,+ev
+
|UOL∗ ∼= H0aU,+ev

+
|UOL∗ .

3. This follows from point 1. resp. 2. since the holonomic rank is the fibre dimension of τ(ρ, X̂, β) at

any λ ∈ W outside the singular locus. For such points λ we also have i+λ = i†λ and this is then an
exact functor.
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