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1 Introduction

In this text I give an overview on research I have done during the last 5 years. The unifying theme is
the understanding of algebraic and geometric structures on deformation resp. moduli spaces in complex
analytic geometry, and more specifically in singularity theory. Two (related) notions that occur in such
situations are Frobenius manifold and Variations of (integrable) twistor structures. Both can be expressed
through certain meromorphic connections on the product of the parameter space in question with the
projective line, and hence the theory of systems of differential equations with singularities enters into
play. Some of the classical questions of this theory, like e.g., finding normal forms for such systems of
differential equations are directly related to the existence of the above structures on the parameter spaces.
A striking difference between Frobenius manifolds and variations of twistor structures is that the former
are purely holomorphic data, whereas the latter involve a rather subtle mixture between holomorphic
and anti-holomorphic objects.
The following text is a short overview of the main results obtained. All definitions and notions are
explained, and all results are stated in detail, but without proofs for which I refer to the original research
papers listed below.
Acknowledgments: I would like to thank Claus Hertling for a very fruitful and intense cooperation
on tt∗-geometry during the last years. I also learned much about Frobenius manifolds and classical
singularity theory from his papers and from the many discussions we had.
It is a true pleasure to thank Claude Sabbah for his continuing support and interest in my work since
my Ph.D. thesis. I also thank David Mond and Ignacio de Gregorio for the stimulating cooperation on
linear free divisors and Frobenius manifolds.

1.1 Submitted papers

The following papers are submitted for the “Habilitation”:

1. Claus Hertling and Christian Sevenheck, Nilpotent orbits of a generalization of Hodge struc-
tures, J. Reine Angew. Math. 609 (2007), 23–80.

2. Claus Hertling and Christian Sevenheck, Curvature of classifying spaces for Brieskorn lat-
tices, J. Geom. Phys. 58 (2008), no. 11, 1591–1606.

3. Claus Hertling and Christian Sevenheck, Limits of families of Brieskorn lattices and com-
pactified classifying spaces, Preprint math.AG/0806.2011, 51 pages, 2008.

4. David Mond, Ignacio de Gregorio and Christian Sevenheck, Linear free divisors and Frobe-
nius manifolds, Preprint math.AG/0802.4188, 46 pages, to appear in “Compositio Mathematica”,
2008.

5. Christian Sevenheck, Spectral numbers and Bernstein polynomials for linear free divi-
sors, Preprint math.AG/0905.0971, 14 pages, 2009.

The first three papers deal with variation of integrable twistor structures, also known as “tt∗-geometry”,
whereas the last two are concerned with Frobenius structures and related objects for some particular
classes of non-isolated singularities, the so-called free divisors. A unifying point of view in all of the
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submitted articles is the theory of (variation of) Brieskorn lattices, these are algebraic or analytic objects
naturally attached to holomorphic resp. algebraic functions on complex resp. algebraic manifolds.
The main results contained in these papers are described in some detail in the following sections.

1.2 Short description of other scientific works

Below is a list and short description of other scientific work.

• Christian Sevenheck and Duco van Straten, Deformation of singular Lagrangian subvari-
eties, Math. Ann. 327 (2003), no. 1, 79–102.

In this paper, a deformation theory for singular lagrangian subvarieties in a symplectic manifold
is developed. A variant of the de Rham complex for such a variety is introduced and it is shown
that under a suitable hypothesis on the geometry of the variety, its cohomology form constructible
sheaves of finite-dimensional vector spaces. As a consequence, such lagrangian varieties, although
their singularities are often non-isolated, have a (formal) versal deformation space. The dimension
of these deformation spaces are explicitly computed for some interesting examples.

• Christian Sevenheck and Duco van Straten, Rigid and complete intersection Lagrangian
singularities, Manuscripta Math. 114 (2004), no. 2, 197–209.

The general results on deformation of lagrangian varieties are applied to study the question of
rigidity for these objects. It is shown that certain classes of lagrangian varieties, in particular, the
so called “open swallowtails” have no lagrangian deformations. This follows from a cohomological
argument on the lagrangian de Rham complex. Similar arguments show that this complex is
pervers in the case of lagrangian complete intersections, for which we also give an estimate on the
codimension of the singular locus.

• Christian Sevenheck, Unobstructed Lagrangian deformations, C. R. Math. Acad. Sci. Paris
338 (2004), no. 8, 617–622.

In this paper, a criterion is given which ensure smoothness of the local moduli space for lagrangian
singularities. This is done via the so-called T 1-lifting principle, and it involves studying a relative
version of the lagrangian de Rham complex.

• Claus Hertling and Christian Sevenheck, Twistor structures, tt∗-geometry and singularity
theory, From Hodge theory to integrability and TQFT tt∗-geometry, Proc. Sympos. Pure Math.,
vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 49–73.

This article gives an introduction to the papers [HS07], [HS08a] and [HS08b], with some details on
the theory of Brieskorn lattices associated to local singularities and tame functions.

2 tt∗-geometry and variation of twistor structures

tt∗-geometry was introduced in [CV91], [CV93]. It can be considered as a generalization of variations of
Hodge structures. A convenient framework is the notion of a variation of TERP-structures, which we
recall first.

Definition 1 ([Her03], [HS07]). Let M be a complex manifold and w ∈ Z. A variation of TERP-struc-
tures on M of weight w is a tuple (H,H ′R,∇, P, w) consisting of:

1. a holomorphic vector bundle H on C × M , equipped with a meromorphic connection ∇ : H →
H⊗z−1Ω1

C×M (log{0}×M), satisfying ∇2 = 0. Here and throughout this text, z is a fixed coordinate
on C. The restriction H ′ := H|C∗×M is then necessarily flat, corresponding to a local system given
by a monodromy automorphism M ∈ Aut(H∞), where H∞ is the space of flat multivalued sections.
For simplicity, we will make the assumption that the eigenvalues of M are in S1, which is virtually
always the case in applications.

2. a flat real subbundle H ′R of maximal rank of the restriction H ′. In particular, M is actually an
element in Aut(H∞R ).
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3. a (−1)w-symmetric, non-degenerate and flat pairing

P : H′ ⊗ j∗H′ → OC∗

where j(z, x) = (−z, x), and which takes values in iwR on the real subbundle H ′R. It extends to a
pairing on i∗H′, where i : C∗ ×M ↪→ C×M , and has the following two properties on the subsheaf
H ⊂ i∗H′:

(a) P (H,H) ⊂ zwOC×M .
(b) P induces a non-degenerate symmetric pairing

[z−wP ] : H/zH⊗H/zH → OM .

Remark: TERP-structures can be divided very roughly into two classes: By definition, the pole order
of ∇ at zero is smaller or equal than two, but it may still define a regular singularity on the underlying
meromorphic bundle (H(∗0),∇). This will be referred to as the regular singular case, otherwise, we
will says that (H,H ′R,∇, P, w) is irregular. As we will see later, both cases actually occur in geometric
situations.
As TERP-structures are supposed to generalize Hodge structures, one has to define in a natural way pure
resp. pure polarized TERP-structures. This is done as follows. Consider the involution γ : P1 → P1,
z 7→ z−1. For any given flat real bundle H ′R on C∗, with complexification H ′ := H ′R ⊗ C, and a given
weight w ∈ Z, define

τ : H ′|z −→ H ′|γ(z)

s 7−→ ∇-parallel transport of z−w · s

The induced map on sections can be seen as an isomorphism of OC∗ -modules τ : H′ → γ∗H′ and as such,
it extends to a morphism τ : î∗H′ → î∗(γ∗H′), where î : C∗ ↪→ P1.
Suppose now that we are given a TERP-structure (H,H ′R,∇, P, w), then we can use τ to identify the OC-
bundle H and the OP1\{0}-bundle γ∗H on the common intersection C∗, and hence define a holomorphic
vector bundle over P1, denoted by Ĥ.

Definition 2 ([Her03, HS07]). 1. (H,H ′R,∇, P, w) is called pure iff Ĥ is trivial, i.e. Ĥ ∼= Ork(H)
P1 .

2. The morphism τ defines a C-antilinear involution on H0(P1, Ĥ). If (H,H ′R,∇, P, w) is pure, put

h : H0(P1, Ĥ)×H0(P1, Ĥ) −→ C

(a, b) 7−→ z−wP (a, τb),

then h is a hermitian form on H0(P1, Ĥ) and we say that (H,H ′R,∇, P, w) is pure polarized iff h
is positive definite.

An easy generalization of the above construction shows that for a given variation of TERP-structures,
the extension to infinity Ĥ is no longer holomorphic, but only a (locally free) OP1CanM -module, where
OP1CanM is the sheaf of real-analytic functions on P1 ×M which are annihilated by ∂z. In this case, the
extension of the connection ∇ on H has a holomorphic and an anti-holomorphic part. More precisely,
we have the following.

Definition 3 ([Sim97]). Let M be a complex manifold and F a locally free OP1CanM -module.
Consider the map σ : P1 ×M → P1 ×M , σ(z, x) = (−z−1, x) and the two sheaves of meromorphic
functions OP1(1, 0) = l∗OP1\{0} ∩ ĩ∗z−1OC and OP1(0, 1) = l∗zOP1\{0} ∩ ĩ∗OC where l : P1\{0} ↪→ P1

and ĩ : C ↪→ P1. Then we say that F underlies a variation of twistor structures if it comes equipped with
an operator

D : F −→ F ⊗ (OP1(1, 0)⊗A1,0
M ⊕OP1(0, 1)⊗A0,1

M )

which is OP1-linear and such that for any z ∈ C∗, its restriction D|{z}×M is a flat connection. F is
pure (of weight zero) if it is fibrewise trivial and in that case a polarization of F is a symmetric D-flat
non-degenerate pairing

Ŝ : F ⊗ σ∗F −→ OP1

which is a morphism of twistors. It induces a Hermitian pairing h on E := π∗F , where π : P1×M →M
is the projection. Then F is called polarized if h is positive definite.
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One checks that the two definitions are compatible, i.e., a variation of TERP-structures gives rise to a
variation of twistor structures via the above construction, and the former is pure resp. pure polarized iff
the same is true for the latter.
One of the main features of this definition is that it is related to some other interesting differential-
geometric object, namely, a harmonic bundle.

Definition 4 ([Sim88, Sim90, Sim97]). Let M be a complex manifold, and (E , θ) be a Higgs bundle
bundle on M , i.e., a holomorphic vector bundle with an OM -linear morphism θ : E → E ⊗Ω1

M such that
θ ∧ θ = 0. Suppose moreover that we are given a hermitian metric h : E ⊗ E → CanM on E and denote by
D′ + D′′ its Chern connection. Then h is called harmonic, and the tuple (E , θ, h) is called a harmonic
bundle, iff (D′ +D′′ + θ + θ)2 = 0, where θ is the h-adjoint of θ.

Given a variation of pure polarized twistor structures Ĥ, e.g., one coming from a variation of pure
polarized TERP-structures, the metric h defined on the bundle E = π∗Ĥ of fibrewise global sections
(here π : P1 ×M → M is the projection) is actually harmonic. Even more, we have the following basic
correspondence.

Proposition 5 ([Sim97]). The category of variations of pure polarized twistor structures on M is equiv-
alent to the category of harmonic bundles on M .

For a pure polarized variation of TERP-structures, the corresponding harmonic bundle is equipped with
some additional structure, explained in the following result.

Lemma 6. [Her03, theorem 2.19] For any variation of pure TERP-structures, the connection operator
∇ takes the following form on fibrewise global sections (i.e., sections from E := π∗Ĥ).

∇ = D′ +D′′ + z−1θ + zθ +
dz

z

(
1
z
U −Q+

w

2
− zτUτ

)
where U ,Q ∈ EndCanM (E). These objects satisfy the following relations, summarized under the name
CV⊕-structure in [Her03].

h(θ−,−)− h(−, θ) = 0, (D′ +D′′)(h) = 0 (1)
(D′′ + θ)2 = 0, (D′ + θ)2 = 0 (2)

D′(θ) = 0, D′′(θ) = 0 (3)
D′D′′ +D′′D′ = −(θθ + θθ) (4)

[θ,U ] = 0, D′(U)− [θ,Q] + θ = 0 (5)
D′′(U) = 0, D′(Q) + [θ, τUτ ] = 0 (6)

τθτ = θ (D′ +D′′)(τ) = 0
h(U−,−) = h(−, τUτ−), h(Q−,−) = h(−,Q−)

Q = −τQτ

If H is pure polarized, then Q is a Hermitian endomorphism of the bundle (E, h) and its real-analytically
varying real eigenvalues are distributed symmetrically around zero.

As already remarked, equations (1) to (4) say that the metric h on E is harmonic. The two identities (3)
and (4) were called tt∗-equations in [CV91]. Variation of twistor structures corresponding to harmonic
bundles with operators U ,Q, τUτ are studied under the name “integrable” in [Sab05, Chapter 7], and
the identities (5) and (6) are called “integrability equations” in loc.cit.
Any variation of pure polarized Hodge structures gives rise to harmonic bundle, and even to a variation
of pure polarized TERP-structures. These variations have the special property that the endomorphism
U from above is zero (see [Her03, section 3.2]). The following result shows that in some cases, it may
happen that even for non-vanishing U , a variation of pure polarized TERP-structures actually comes
from a variation of pure polarized Hodge structures.

Theorem 7. [Sab05, corollary 7.2.8], [HS08b, theorem 6.2] Let M be either a compact Kähler manifold
or the complement of a simple normal crossing divisor in a smooth projective variety. Let (H,H ′R,∇, P, w)
be a variation of pure polarized TERP-structures on M with associated harmonic bundle (E,D′′, θ, h). In
the second case, suppose moreover that E is tame along the boundary divisor (see, e.g., [HS08b, section
3]). Then E underlies a (sum of two) variation(s) of pure polarized Hodge structures.
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We end this part with a short description of how (variation of) TERP-structures actually arise in sin-
gularity theory. More details on this construction can be found in the first section of [HS08c]. Two
cases are of interest: The classical situation of a holomorphic function germ f : (Cm, 0) → (C, 0) with
an isolated critical point, and the more recently studied case of polynomial functions f : U → C (where
U is a smooth affine complex manifold of dimension m) satisfying a condition of topological triviality at
infinity, e.g., M-tameness ([NS99]) or cohomological tameness ([Sab06]). In both situations, we denote
by t a coordinate on the base space, centered at zero. In the first case, by choosing an appropriate
representative f : X → S for the given function germ, we define

Man
0 :=

f∗ΩmX
df ∧ df∗Ωm−2

X

which is a free OS-module of rank µ := dimC(OX/Jf ). It is naturally equipped with a connection
operator ∇ : Man

0 → Man
0 ⊗ Ω1

S(∗0) which is regular singular at 0 ∈ S (see [Bri70]). Hence, there is a
unique extension (which we denote by the same symbol) Man

0 to a free OC-module with a connection
of the same type. Consider the intersection ĩ∗M

an
0 ∩ l∗V<∞ (here ĩ : C ↪→ P1 and l : P1\{0} ↪→ P1),

where the latter module is the (unique) meromorphic regular singular extension of M0 to infinity. The
space Malg

0 := H0(P1, ĩ∗M
an
0 ∩ l∗V<∞) is then a free C[t]-module, i.e., corresponds to an algebraic vector

bundle on C.
In the second case mentioned above, one can directly define

Malg
0 :=

f∗Ω
m,alg
U

df ∧ df∗Ωm−2,alg
U

using algebraic differential forms. By [Sab06], tameness implies that this module is C[t]-free of finite
rank, which may, however, differ from the sum of Milnor numbers of the critical points of f on U .
Now define Galg0 := Malg

0 ⊗C C[∂−1
t ], and equip it with a C[z]-action, where z acts by ∂−1

t . Notice that
in the first case (and also in the second one if U is contractible), any element in Malg

0 has a unique
preimage under the operator ∇t, so that actually Galg0 = Malg

0 (as C-vector spaces) in these cases. The
C[t]-module structure on Malg

0 yields an action of z2∇z on Galg0 , and we write Gan0 for the associated
analytic bundle, which is thus equipped with a connection with a pole of order at most two at 0. Notice
finally that in the second case, Galg0 is simply given as the top-cohomology group of a twisted de Rham
complex, i.e.,

Galg0 :=
f∗Ω

m,alg
U [z]

(zd− df∧)f∗Ω
m−1,alg
U [z]

and the connection operator z2∇z is defined by (z2∇z)(ω) := f · ω for ω ∈ f∗Ωm,algU , and extended by
the Leibniz rule. We will use this direct description in section 3.
Summarizing the above construction, we obtain a holomorphic vector bundle on C with a connection
with pole of order at most two at zero. A detailed discussion of the duality theory involved yields the
definition of a pairing P : Gan0 ⊗ j∗Gan0 → zmOC (see [Her03] for the local and again [Sab06] for the
global case). Moreover, an essentially topological argument shows that the flat bundle (Gan0 )|C∗ carries
a natural real structure.

Theorem 8 ([Her03],[Sab06],[HS07]). Consider one of the two cases discussed above.

1. Putting H := Gan0 , then (H,H ′R,∇, P, w) is a TERP-structure of weight w := m.

2. For a deformation F : X ×M → S resp. F : U ×M → C of f : X → S resp. f : U → C, a
variant of the above construction yields a holomorphic bundle H := Gan0 → C×M which underlies
a variation of TERP-structures on M . (Notice that in the second case it is not supposed that
Ft : U × {t} → C is tame for all t ∈M).

The above rigidity result (theorem 7) says heuristically that interesting variations of pure polarized
TERP-structures occur on parameter spaces which are neither compact nor quasi-projective (this is the
case for local singularities), or otherwise that the corresponding harmonic bundle is not tame along all
components of the boundary divisor (this happens for variation of TERP-structures defined by families
of tame polynomial functions).
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2.1 Nilpotent orbits of TERP-structures

A classical theorem of Cattani, Kaplan and Schmid ([Sch73], [CK82], [CK89]) characterizes polarized
mixed Hodge structures through a geometric object, the so called “nilpotent orbits”. For TERP-
structures, there is a natural generalization of this notion.

Definition 9 ([HS07]). Let (H,H ′R,∇, P, w) be a given TERP-structure of weight w. Write, for any
r ∈ C∗, πr for the the multiplication map C × C∗ → C, (z, r) 7→ zr and π′r for the map C × C∗ →
C, (z, r) 7→ zr−1. Then we say that (H,H ′R,∇, P, w) induces a nilpotent orbit of TERP-structures iff
π∗r (H,H ′R,∇, P, w) is pure polarized for any r such that |r| � 1, and a Sabbah orbit of TERP-structures
iff the same holds for (π′)∗r(H,H

′
R,∇, P, w).

One of the main results of [HS07] establishes a correspondence between such nilpotent orbits and so
called “mixed TERP-structures” which is the appropriate generalization of mixed Hodge structures. Its
definition is rather involved, we concentrate on the regular singular case here. In this case, a TERP-
structure is mixed if a certain associated filtration defines a polarized mixed Hodge structure. For the
geometric situation of an isolated hypersurface singularity mentioned above, this filtration is actually
rather classical, it corresponds to Steenbrink’s Hodge filtration on the cohomology of the Milnor fibre of
the singularity.

Definition 10 ([Her03],[HS07]). Let (H,H ′R,∇, P, w) be a given TERP-structure of weight w.

1. Consider the space of multivalued flat sections (i.e., nearby cycles) H∞ := ψz(H|C∗). Write
H∞ = ⊕λ∈CH∞λ for the generalized eigen-decomposition with respect to the monodromy oper-
ator M = Ms · Mu, where Ms resp. Mu denotes the semi-simple resp. unipotent part. Put
N := log(Mu) and denote by W• the weight filtration defined by the nilpotent endomorphism N .
Define an automorphism of H∞e−2πiα by

G(α) :=
∑
k≥0

1
k!

Γ(k)(α)
(
−N
2πi

)k
=: Γ

(
α · id− N

2πi

)
.

Here Γ(k) is the k-th derivative of the gamma function. In particular, G depends only on the flat
bundle H ′ and induces the identity on GrW• .

2. We define a polarizing form on H∞ by putting, for A,B ∈ H∞, S(A,B) := (−1)(2πi)wP (A, t(B))
where

t(B) =


(M − Id)−1(B) ∀B ∈ H∞6=1

−(
∑
k≥1

1
k!N

k−1)−1(B) ∀B ∈ H∞1 .

Here H∞6=1 := ⊕λ 6=1H
∞
λ and P is seen as defined on the local system corresponding to the flat bundle

H ′.

3. Suppose that (H,∇) is regular singular at zero. Then put for α ∈ (0, 1]

F̃ pH∞e−2πiα := (G(α))−1
(
zp+1−w−α+ N

2πiGrα+w−1−p
V H

)
, (7)

where V • is the decreasing filtration by Deligne lattices of the meromorphic bundle H(∗0) at z = 0.

4. Let (H,∇) be arbitrary and put G0 := H0(P1, l∗V<∞∩ ĩ∗H). In the geometric situation from above,
this G0 is exactly the module Galg0 . Define

F̃ pSabH
∞
e−2πiα := (G(α))−1

(
zp+1−w−α+ N

2πiGrVα+w−1−pG0

)
, (8)

here V• is the increasing filtration by Deligne lattices of G0 at z =∞.

With these notions at hand, we can state the following result.

Theorem 11. [HS07, theorem 6.6, theorem 7.3] Let (H,H ′R,∇, P, w) be a regular singular TERP-
structure. Then the following two conditions are equivalent.
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1. It induces a nilpotent orbit.

2. (H∞, H∞R ,−N,S, F̃ •) defines a polarized mixed Hodge structure (PMHS) of weight w − 1 on H∞6=1

and a PMHS of weight w on H∞1 .

Similarly, let (H,H ′R,∇, P, w) be an arbitrary TERP-structure. Then the following two conditions are
equivalent.

1. It induces a Sabbah orbit.

2. (H∞, H∞R , N, S, F̃
•
Sab) defines a PMHS of weight w− 1 on H∞6=1 and a PMHS of weight w on H∞1 .

The main part of the proof of these theorems relies on the asymptotic analysis of harmonic bundles from
[Moc07], in particular, it uses the construction of a limit mixed twistor structure.
We outline the following two consequences of these results which apply to TERP-structures in the
geometric situations discussed above.

Corollary 12. [HS07, corollary 11.4]

1. Let f : (Cn+1, 0) → (C, 0) be an isolated hypersurface singularity, and denote by TERP (f) the
TERP-structure defined by the construction in theorem 8, 1. Then there is a sufficiently big real
number r such that TERP(r · f) is pure polarized.

2. Let f : U → C be a tame function, and consider the TERP structure TERP(f) from theorem
8, 2. Then the filtration F̃ •SabH

∞ gives rise to a (sum of two) PMHS, which is a twist by the
automorphism G of the MHS considered in [Sab06].

In applications, the case of irregular TERP-structures is as important as the regular singular case. A
similar result holds in this case, one direction was proved in [HS07]. We refrain here from explaining it in
detail, let us only mention that the notion of a mixed TERP-structure (see [HS07, definition 9.1]), which
in the regular singular case is defined by condition 2. in theorem 11 is more complicated in general.
Basically it says that the formal decomposition of the irregular connection (H,∇) can be done without
ramification, that the associated Stokes structure is compatible with the real structures and that the
regular singular parts in the decomposition satisfy condition 2. in theorem 11. Under these hypotheses,
it is shown in [HS07, theorem 9.3, 2.] that the family π∗r (H,H ′R,∇, P, w) is a nilpotent orbit. As a
consequence, the first part of corollary 12 from above also holds for any family TERP(r · Ft), where
F : (Cm ×M, 0)→ (C, 0) is a semi-universal unfolding of the given germ f and t ∈M.
The converse of [HS07, theorem 9.3, 2.] was conjectured in [HS07]. It was proved very recently in
[Moc08a], using deep structure results on wild harmonic bundles from [Moc08b].

2.2 Classifying spaces of integrable twistor structures

The philosophy of generalizing Hodge structures to TERP-structures naturally lead to the question of
studying period mappings associated to variations of TERP-structures, in particular, for those variations
defined by families of holomorphic resp. algebraic functions, as explained in the beginning of this section.
An important step in this program is the study of appropriate classifying spaces for TERP-structures.
We first recall some facts about classifying spaces of Hodge resp. mixed Hodge structures which are
needed later.
Fix a real vector space H∞R , an automorphism M ∈ Aut(H∞R ) with eigenvalues in S1 (and again we
write M = Ms · Mu and N = log(Mu)), an integer w ∈ Z and a (−1)w-symmetric bilinear pairing
S : H∞R × H∞R → R such that S(N−,−) + S(−, N−) = 0. Write H∞ := H∞R ⊗ C. Fix moreover a
reference filtration F •0 on H∞ such that (H∞, H∞R , N, S, F

•
0 ) is a PMHS of weight w (see, e.g., [HS07,

section 2] for a definition) and such that Ms is a semi-simple automorphism of this PMHS. Denote
by Pl ⊂ GrWl the primitive subspaces of the weight filtrations W• of N , centered at w. Define (see
[Her99, HS08a])

ĎPMHS :=
{
F •H∞ |F • is Ms-invariant; dimF pPl = dimF p0 Pl; S(F p, Fw+1−p) = 0;

N(F p) ⊂ F p−1, and all powers of N are strict with respect to F •
}
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There is a projection map β̌ : ĎPMHS → ĎPHS , sending F • to (F •Pl)l∈Z, here ĎPHS is a product of
classifying spaces of Hodge-like filtrations on the primitive subspaces Pl. ĎPHS is a complex homogeneous
space, it contains the open submanifold DPHS which is a product of classifying spaces of polarized Hodge
structures, and which has the structure of a real homogeneous space. β̌ is a locally trivial fibration with
affine spaces as fibres. Define DPMHS to be the restriction of this fibration to DPHS . Then also ĎPMHS

(resp. DPMHS ) is a complex (resp. real) homogeneous space.
In order to construct classifying spaces of TERP-structures, we will need to consider a classical invariant
of a regular singular TERP-structure, namely the spectral numbers resp. spectral pairs. We recall the
definition.

Definition 13. [HS07] Let (H,H ′R,∇, P, w) be a regular singular TERP-structure of weight w.

1. The spectrum of (H,∇) at zero is defined as Sp(H,∇) =
∑
α∈Q d(α) · α ∈ Z[R] where

d(α) := dimC

(
GrαVH
GrαV zH

)
= dimC Grbw−αceF H∞e−2πiα .

We also write Sp(H,∇) as a tuple α1, . . . , αµ of µ numbers (with µ = rk(H)), ordered by α1 ≤
. . . ≤ αµ. We have that αi = w − αµ+1−i and that α is a spectral number only if e−2πiα is an
eigenvalue of the monodromy M of H ′ (in particular, all αi are real by assumption).

2. The spectral pairs are a refinement of the spectrum taking into account the weight filtration W•(N)
(Here the restriction of W•(N) to H∞1 is centered around w, and the restriction to H∞6=1 is centered
around w − 1). They are given by Spp(H,∇) :=

∑
α∈Q d̃(α, k) · (α, k) ∈ Z[R×Z], where

d̃(α, k) :=

{
dimC Grbw−αceF GrWk H∞e−2πiα ∀α /∈ Z
dimC Grw−αeF GrWk+1H

∞
1 ∀α ∈ Z

For a given space ĎPMHS , and for any element F • ∈ ĎPMHS , one may consider all possible regular
singular TERP-structures inducing this filtration via the construction from definition 10, 3. This leads
to the following definition.

Definition 14. [HS08a] Fix w ∈ Z, a flat bundle H ′ → C∗ with real structure H ′R ⊂ H ′, and a flat,
(−1)w-symmetric, non-degenerate pairing P : H′ ⊗ j∗H′ → OC∗ , which takes values in iwR on H ′R.
Write (H∞, H∞R , S) for the associated linear algebra data as in definition 10, fix a reference filtration F •0
on H∞ and consider the classifying spaces ĎPMHS and DPMHS . Define

ĎBL :=
{
H ⊂ V >−∞ |H → C holomorphic vector bundle, H|C∗ = H ′,

(z2∇z)(H) ⊂ H, P (H,H) ⊂ zwOC non-degenerate, F̃ • ∈ ĎPMHS

}
Remember that F̃ • is the filtration defined on H∞ by H (see from definition 10, 3.). Notice also that
the condition F̃ • ∈ ĎPMHS implies that all elements H ∈ ĎBL have the same spectral pairs, which are
fixed by the choice of F •0 . We write (α1, . . . , αµ) for the spectral numbers of all elements H ∈ ĎBL, in
particular, for all such H we have V >αµ−1 ⊂ H ⊂ V α1 .

We have a projection map α̌ : ĎBL → ĎPMHS defined by H 7→ F̃ •. One of the main results of [Her99]
is that ĎBL is a complex manifold, and that α̌ is a locally trivial fibration where the fibres are affine
spaces. Again we put DBL := α̌−1(DPMHS ). The situation can be visualized in the following diagram.

DBL ↪→ ĎBL

↓ α ↓ α̌
DPMHS ↪→ ĎPMHS

↓ β ↓ β̌
DPHS ↪→ ĎPHS

Note that neither ĎBL nor DBL are homogeneous.
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By definition of the space ĎBL, for any family H →M of regular singular TERP-structures on a simply
connected manifold M with constant spectral pairs we obtain a holomorphic map φ : M → ĎBL by
associating to each point x in M the point in ĎBL representing the TERP-structure over x, i.e., the
restriction of our family to C× {x}.
The following lemma describes some direct consequences of the definition of the spaces ĎBL and DBL.

Lemma 15. [HS08a, sections 3 and 4]

1. There is a universal bundle H → C× ĎBL of TERP-structures, i.e., the restriction H|C×{x} is the
regular singular TERP-structure represented by the point x ∈ ĎBL. We have a connection operator

∇ : H −→ H⊗
(
z−2Ω1

C×ĎBL/ĎBL ⊕ z
−bαµ−α1cΩ1

C×ĎBL/C

)
,

i.e., in general H does not underly a variation of TERP-structures. The construction described in
the beginning of section 2 yields an extension of H to a locally free OP1Can

ĎBL
-module Ĥ, i.e., a real

analytic family of twistors, equipped with a polarization as in definition 3.

2. Define Ďpp
BL := {x ∈ ĎBL | Ĥ|P1×{x} is pure polarized }, which is an open submanifold, then the

Can-bundle π∗Ĥ|ĎppBL carries a positive definite hermitian metric (which is not harmonic in general).

3. There is an injective bundle map

ΘĎBL
↪→ HomOC×ĎBL

(
H, z

−bαµ−α1cH
H

)
defined by X 7−→ [s 7→ ∇X(s)]. This map restricts to ΘĎppBL

↪→ HomO
C×Ďpp

BL

(
H, z

−bαµ−α1cH
H

)
, and

via this inclusion, the tangent bundle ΘĎppBL
is equipped with a positive definite hermitian metric.

The main result of [HS08a] is then the following.

Theorem 16. [HS08a, theorem 4.1] There is a coherent subsheaf T hor
ĎBL

of TĎBL such that for any
variation of TERP-structures on a simply connected space M , we have that dφ(TM ) ⊂ φ∗(T hor

ĎBL
). In

general, T hor
ĎBL

is not OĎBL-locally free. Write T hor
ĎppBL

for the restriction (T hor
ĎBL

)|ĎppBL .
The restriction of the holomorphic sectional curvature κ : TĎppBL\{zero-section} → R to the subspace
Thor
ĎppBL
\{zero section} (i.e., the complement of the zero section of the linear space associated to the coherent

sheaf T hor
ĎppBL

) is bounded from above by a negative number.

We outline two immediate consequences, which are analogues for the corresponding statements for vari-
ations of Hodge structures.

Corollary 17. 1. [HS08a, proposition 4.3] For a complex manifold M , any horizontal mapping φ :
M → Ďpp

BL, i.e., such that dφ(TM ) ⊂ φ∗(T hor
ĎppBL

) is distance decreasing with respect to the Kobayashi

pseudodistance on M and the distance induced by h on Ďpp
BL.

2. [HS08a, corollary 4.5] Any variation of regular singular pure polarized TERP-structures with con-
stant spectral pairs on Cm is trivial, i.e., flat in the parameter direction.

2.3 Limit structures and compatifications

Consider the following example of a classifying space ĎBL from the last subsection: Let H∞ := CA1 ⊕
CA2, where A1 = A2, M(Ai) = Ai, w = 0 and S(Ai, Aj) = δi+j,3. Define F •0H

∞ by:

{0} = F 2
0H
∞ ( F 1

0H
∞ := CA1 = F 0

0H
∞ ( F−1

0 H∞ := H∞

Then ĎPMHS = {F •0 , F
•
0}, and ĎBL is a union of two connected components above the two points of

ĎPMHS . Both components are isomorphic to C = Spec C[r], the universal family of the component over
F •0 is H := OC2v1⊕OC2v2, where v1 := z−1A1+r ·A2 and v2 := zA2. For any r ∈ C, the TERP-structure
H|C×{r} has spectrum (−1, 1). The situation is visualized as follows.
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We have γ∗H := O(P1\{0})×Cv
′
1 ⊕ O(P1\{0})×Cv

′
2, where v′1 = zA2 + r · A1 and v′2 = z−1A1. Hence we

see that Ĥ is pure for all r ∈ C with |r| 6= 1 (namely, we have Ĥ|P1×{r} = OP1v1 ⊕ OP1v′1 for |r| 6= 1),
and polarized iff |r| > 1. For |r| = 1, we have Ĥ ∼= OP1(1) ⊕OP1(−1). The definition of the hermitian
h metric on Ďpp

BL
∼= {r ∈ C | |r| > 1} yields that

h(∂s, ∂s) =
1

s2s2(1− (ss)−1)2

where s := r−1 is a coordinate on Ďpp
BL near infinity. We see that for s → 0, h(∂s, ∂s) tends to 1, this

implies that the metric space Ďpp
BL is not complete. The reason for this is that the above family can be

completed to a family over P1: consider the restriction H|C×C∗ , then this family is extended by

OC×(P1\{0})(s · z−1A1 +A2)⊕OC×(P1\{0})A1,

and the restriction to s = 0 of this family is OCA1 ⊕ OCA2 which has spectrum (0, 0). Hence, this
limit point is missing in the space Ďpp

BL which therefore cannot be complete for the distance induced
by h. Notice that in this example, the subspace DPMHS of ĎPMHS is empty: both points F •0 and
F
•
0 are negative definite pure Hodge structures. One can change the sign of the pairing S in order to

make F •0 and F
•
0 into pure polarized Hodge structures, however, then the pure polarized part Ďpp

BL is
{r ∈ C | |r| < 1}. On the other hand, the example given at the end of [HS08a] shows that there are also
classifying spaces Ďpp

BL which are not complete for the hermitian metric h and where the intersection
Ďpp
BL ∩DBL is non-empty.

In order to construct a space with a complete metric, the above reasoning naturally lead us to allow for
varying spectral numbers. However, a range for them should be fixed for otherwise the corresponding
classifying space has no reason to be finite-dimensional. Hence we make the following definition.

Definition 18. [HS08b] Fix, as before H∞R , M ∈ Aut(H∞R ), S : H∞R ×H∞R → R and w ∈ Z. Fix also
α1 ∈ R such that e−2πα1 is an eigenvalue of M and such that α1 ≤ w

2 . Consider the flat bundle H ′ → C∗

corresponding to (H∞,M) and the Deligne extensions V α → C of H ′. Define

MBL :=
{
H ⊂ V α1 |H → C holomorphic vector bundle, H|C∗ = H ′,

(z2∇z)(H) ⊂ H, P (H,H) ⊂ zwOC non-degenerate
}

Notice that the conditions H ⊂ V α1 and that P takes values in zwOC on H and is non-degenerate
actually imply that the spectrum of H is contained in the interval [α1, w − α1] (due to the symmetry
property αi = w − αµ+1−i, see definition 13).
With the above definitions at hand, we have the following theorem, which is one of the main results of
[HS08b].

Theorem 19. 1. [HS08b, definition-lemma 7.1] MBL is a projective variety which contains the
spaces ĎBL (for the various spectral numbers {α1, . . . , αµ} ⊂ [α1, w − α1]) as locally closed sub-
spaces. There is a universal locally free OC×MBL

-module H of TERP-structures, which reduces
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to the universal bundle considered in subsection 2.2 when restricted to a subspace ĎBL. Given a
variation of regular singular TERP-structures on a simply connected manifold M , then there is a
holomorphic period map φ : M →MBL. Here the rational number α1 used in the construction of
MBL is the smallest element of the generic spectral numbers of the given family (such a minimal
spectral number exists).

2. [HS08b, section 8] Define Mpp
BL :=

{
x ∈MBL | Ĥ|P1×{x} is pure polarized

}
, then a similar con-

struction as in the case of Ďpp
BL (lemma 15) endows the tangent sheaf of Mpp

BL with a positive
definite hermitian metric, which defines a distance function dh on Mpp

BL.

3. [HS08b, theorem 8.6] The metric space (Mpp
BL, dh) is complete.

4. [HS08b, theorem 8.8] Suppose that there is a lattice H∞Z ⊂ H∞R with M ∈ Aut(H∞Z ). Write GZ :=
Aut(H∞Z , S,M), then GZ acts properly discontinuously on Mpp

BL, hence, the quotient Mpp
BL/GZ

has the structure of a complex space.

Notice that contrary to ĎBL (resp. Ďpp
BL) the variety MBL (resp. Mpp

BL) may be singular and even
non-reduced. However, one can still work with distance functions defined by a hermitian metric on the
tangent sheaf (see, e.g., [Kob05]).
The following corollary is a direct consequence, its proof is analogue to the case of variations of Hodge
structures.

Corollary 20. [HS08b, theorem 9.5] Let X be a complex manifold, Z ⊂ X a complex space of codimen-
sion at least two. Suppose that the complement Y := X\Z is simply connected. Let (H,H ′R,∇, P, w) be
a variation of regular singular pure polarized TERP-structures on the complement Y which has constant
spectral pairs. Then this variation extends to the whole of X, with possibly jumping spectral numbers
over Z.

In applications, one is also interested in understanding extensions over codimension one subvarieties.
More precisely, let 1 ≤ l ≤ n, X := ∆n, Y := (∆∗)l×∆n−l, X\Y =

∐
i=1,...,lDi, and consider a variation

of pure polarized regular singular TERP-structures (H,H ′R,∇, P, w) on Y . Denote by Mi ∈ Aut(H∞R ) the
monodromy corresponding to a loop around C∗×Di ⊂ C∗×X and by Mz the monodromy corresponding
to a loop around {0} × Y ⊂ C × Y . We say that the monodromy respects a lattice if there is a lattice
H∞Z ⊂ H∞R such that the image of γ : π1(C∗ × Y ) → Aut(H∞R ) is contained in Aut(H∞Z ), in that case
we put GZ := Aut(H∞Z , S,Mz).
The following statement is essentially an application of the fundamental results of Mochizuki ([Moc07]) on
limit mixed twistor structures, together with a careful discussion on the corresponding limit statements
for variation of TERP-structures (see sections 3-5 of [HS08b]).

Theorem 21. [HS08b, theorem 9.7] Let (H,H ′R,∇, P, w) be a variation of regular singular, pure polarized
TERP-structures on Y .

• If Mi = Id for all i ∈ {1, . . . , k}, i.e., if there is a period map φ : Y →Mpp
BL, then this map extends

to
φ : X →Mpp

BL

and the variation H extends to a variation on X.

• Suppose that the monodromy respects a lattice. Then we have a locally liftable period map φ :
Y →Mpp

BL/GZ. If all Mi are semi-simple, then φ extends holomorphically (not necessarily locally
liftable) to

φ : X →Mpp
BL/GZ.

3 Frobenius manifolds and linear free divisors

We start this part by recalling the definition and an alternative description of Frobenius structures
on complex manifolds. We also explain briefly two situations in singularity theory where Frobenius
structures naturally occur.
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Definition 22. [Dub96, Her02] Let M be a complex manifold. A Frobenius structure on M is given by
two tensors ◦ ∈ (ΩM )⊗2 ⊗OM ΘM , g ∈ (ΩM )⊗2 and two vector fields E, e ∈ ΘM subject to the following
relations.

1. ◦ defines a commutative and associative multiplication on ΘM with unit e.

2. g is bilinear, symmetric and non-degenerate.

3. For any X,Y, Z ∈ ΘM , g(X ◦ Y,Z) = g(X,Y ◦ Z).

4. g is flat, i.e., locally there are coordinates t1, . . . , tµ on M such that the matrix of g in the basis
(∂t1 , . . . , ∂tµ) is constant.

5. Write ∇ for the Levi-Civita connection of g, then the tensor ∇◦ is totally symmetric.

6. ∇(e) = 0.

7. LieE(◦) = ◦, LieE(g) = D · g for some D ∈ C

Remark: An important consequence of this definition is that the structure (M, ◦, g, e) can be encoded
locally by a single holomorphic function, more precisely, let as before t1, . . . , tµ be local flat coordinates
with e = ∂t1 , then there is F ∈ OM such that g(∂i ◦∂j , ∂k) = ∂i∂j∂kF , where ∂i := ∂ti . The associativity
of the multiplication ◦ is then equivalent to the so called Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)
equation, which says that∑

k,l

∂i∂j∂kF · gkl · ∂l∂r∂sF =
∑
k,l

∂i∂r∂kF · gkl · ∂l∂j∂sF

holds for any i, j, r, s ∈ {1, . . . , µ}, where (gkl) is the inverse matrix of (g(∂k, ∂l))kl In applications, one
uses the following equivalent description of a Frobenius manifold.

Theorem 23. [Sab07, Her02] Fix an integer w ∈ Z. Then a Frobenius structure on a complex manifold
M can be encoded equivalently be the following set of data.

1. a holomorphic vector bundle E on P1×M such that rank(E) = dim(M), which is fibrewise trivial,
i.e. E = π∗π∗E, (where π : P1 ×M →M is the projection) equipped with an integrable connection
with a logarithmic pole along {∞} ×M and a pole of type one along {0} ×M ,

2. a non-degenerate, (−1)w-symmetric pairing P : E ⊗ j∗E → OP1×M (−w,w) (here j(z, u) = (−z, u)
and we write OP1×M (a, b) for the sheaf of meromorphic functions on P1 ×M with a pole of order
a along {0} ×M and order b along {∞} ×M) the restriction of which to C∗ ×M is flat,

3. a global section ξ ∈ H0(P1×M, E), whose restriction to {∞}×M is flat with respect to the residue
connection ∇res : E/z−1E → E/z−1E ⊗ Ω1

M with the following two properties

(a) The morphism

Φξ : TM −→ E/zE ∼= π∗E
X 7−→ −[z∇X ](ξ)

is an isomorphism of vector bundles (a section ξ with this property is called primitive),

(b) ξ is an eigenvector of the residue endomorphism [z−1∇z−1 ] ∈ EndOM (π∗E) ∼= EndOM (E/z−1E)
(a section with this property is called homogeneous).

There are two important geometric situations in which Frobenius structures occur in singularity theory,
namely, those mentioned in the beginning of section 2: local singularities f : (Cm, 0)→ (C, 0) and tame
polynomial functions f : U → C. The basic recipe to construct Frobenius manifolds is similar in both
situations: One considers the Fourier-Laplace transformed Brieskorn lattice (i.e., the bundle denoted by
Gan0 in theorem 8) of both f and of a semi-universal deformation F of f over a parameter space M , where
in the second case there are some subtleties, due to the fact that not all members in this deformation
are tame. The main points are to find an extension Ĝan0 of Gan0 to a trivial holomorphic P1 ×M -bundle
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with a logarithmic pole along infinity and such that z−mP takes values in OM on π∗Ĝ
an
0 , P being the

pairing from definition 1. It turns out that it is sufficient to find this extension only at a point of the
parameter space, i.e., for the Brieskorn lattice of the function f . Once such an extension is found, it
remains to obtain a homogenous and primitive form ξ as above.

Theorem 24 ([Sai81, Sai83, Sai89, Her02]). Let f : (Cm, 0)→ (C, 0) be an isolated hypersurface singu-
larity, and (M, 0) (the germ at zero of) its semi-universal unfolding space. This space carries a Frobenius
structure, which depends on the choice of an opposite filtration to the Hodge filtration on the cohomology
of the Milnor fibre of the singularity f , and a generator of a certain one dimensional graded piece for this
opposite filtration. Up to constant multiplication, this generator is the only primitive and homogenous
section. Notice that only the metric g depends on these choices, the multiplication as well as the unit
and the Euler field are independently defined. As canonical choice for the opposite filtration is given by
Deligne’s Ip,q-decomposition for the mixed Hodge structure.

In the second case, a weaker result holds. The data 1. to 3. in the above equivalent description of
Frobenius structures can be constructed for any tame function, however, the last point is more subtle
and for the moment only shown for a restricted class of functions. We summarize these results in the
following statement.

Theorem 25 ([Sab06], [DS03]). 1. Let f : U → C be a cohomological tame function. Then any
choice of an opposite filtration to the Hodge filtration on H∞ yields an extension of Gan0 to infinity
as above. Again a canonical choice is given by the Ip,q-decomposition of Deligne.

2. Let f : (C∗)m → C be a convenient and non-degenerate Laurent polynomial in the sense of [Kou76].
Then again there is a one-dimensional graded piece of the canonical opposite filtration from 1.
such that any generator of this space is a primitive and homogenous global section of the canonical
extension of the Brieskorn lattice of f . This one dimensional space is canonical in the sense that
it corresponds to the eigenspace of the residue endomorphism [z−1∇z−1 ] for the smallest spectral
number, i.e., this smallest spectral number has multiplicity one in this case.

However, it may happen that there are other primitive and homogenous sections. Any choice of
an opposite filtration and a primitive and homogenous section yields a Frobenius structure on a
universal unfolding M of f .

Notice that with a more restrictive condition on the Newton boundary, one can also show the existence
of a primitive and homogenous section for the case of tame polynomials f : Cm → C (see [Sab06, DS03]).

3.1 Pre-homogenous vector spaces, quiver representations and linear free
divisors

A free divisor generalizes in a very natural way a normal crossing divisor. Following Saito ([Sai80]), we
call a reduced divisor D := h−1(0) ⊂ M , where M is any n-dimensional complex manifold free iff the
coherent OM -module of logarithmic vector fields

Θ(− log D) := {ϑ ∈ ΘM | (ϑ)(f) ⊂ (f)}

is locally free. These divisors appear in many situations, e.g., various kinds of discriminants in deforma-
tion spaces are free. In [BM06], the more special class of linear free divisors has been introduced and
turned out to be connected to rather different areas: the theory of pre-homogenous vector spaces, and,
as a particular class of examples, discriminants of quiver representation spaces.
We give a brief review of the relevant definitions from [BM06], [GMNS09] and [MdGS08].

Definition 26. 1. Let V be a complex vector space, and G a connected algebraic group acting on V .
Then (V,G) is called pre-homogenous iff there is a Zariski open orbit of G in V .

2. Let V := Cn, fix coordinates x1, . . . , xn, then a reduced algebraic hypersurface D ⊂ V is called
linear free iff it is free in the above sense and if there is a basis δ1, . . . , δn of Θ(− log D) such that
δi =

∑n
j=1 aij∂xj where aij ∈ C[x1, . . . , xn]1 are linear polynomials.
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3. For a linear free divisor D ⊂ V , let G be the identity component of the algebraic group GD :=
{g ∈ Gl(V ) | g(D) ⊂ D}. Then (V,G) is pre-homogenous, in particular, the complement V \D is
an open orbit of G. We call D reductive if GD is so. A rational function r ∈ C(V ) is called
a semi-invariant if there is a character χr : G → C∗ such that g(r) = χr(g) · r for all g ∈ G.
Obviously, h itself is a semi-invariant.

Notice that it follows from Saito’s criterion ([Sai80, theorem 1.8.ii]) that h is (up to a constant factor)
the determinant of the matrix A ∈ M(n × n,C[V ]1) such that δ = A · ∂xt is a basis of Θ(− log D), in
particular, it is a homogenous polynomial of degree n.
We give a short list of some examples of linear free divisors.

1. The normal crossing divisor: As already mentioned, linear free divisors generalizes divisors
with only normal crossing singularities. More precisely, if we put h :=

∏n
i=1 xi ∈ C[V ], then

obviously Θ(− log D) := ⊕ni=1OV xi∂xi , so that D is linear free. Notice however that a normal
crossing divisor with less components, i.e., D̃ := h̃−1(0), where h̃ :=

∏k
j=1 xij with k < n is free,

but not linear free, as we then have

Θ(log D̃) =
k⊕
j=1

OV (xij∂xij )⊕
⊕

i/∈i1,...,ik

OV ∂xi

2. Quiver representations: Let Q := (Q0, Q1, h, t) be a quiver (i.e., an oriented graph without
loops with edge set Q0, arrow set Q1 and mappings “head” and “tail” h, t : Q1 → Q0) and
d ∈ NQ0 be a dimension vector. Consider the space Rep(Q,d) :=

∏
a∈Q1

HomC(Cdh(a) ,Cdt(a)).
The “quiver group” GlQ,d := (

∏
e∈Q0

Gl(de,C))/C∗ (C∗ is the subgroup of diagonal matrices with
the same entry everywhere) acts by the usual transformation formula on each factor of Rep(Q,d).
If d is a real Schur root, i.e. (see, e.g., [BM06]), if there is exactly one orbit of indecomposable
representations in Rep(Q,d), then (Rep(Q,d),GlQ,d) is pre-homogenous. The complement of the
open orbit is denoted by D, and if each irreducible component of D contains an open orbit of GlQ,d,
then D is a linear free divisor. In particular, the latter condition is always satisfied if Q is a Dynkin
quiver. As an example of a non-Dynkin quiver giving rise to a linear free divisor, consider the series
?r, given by a quiver Q with r exterior vertices with one arrow each to a common interior vertex,
where one attaches 1 as dimension to the exterior vertices and r − 1 as dimension to the interior
vertex. It is easy to see that in this case Rep(Q,d) is identified with the space of r×(r−1)-matrices,
on which (Gl(r,C)×Gl(r − 1,C))/C∗ acts in the natural way.

3. Two examples of irreducible linear free divisor:

(a) [GMNS09, example 1.4.(2)] Consider the space of polynomials of degree 3 in two variables, and
inside this space its discriminant, i.e., the hypersurface of polynomials with multiple roots. It
can be shown that this is a (reductive) irreducible linear free divisor of degree 4.

(b) [SK77, proposition 11] Consider the group G = Sl(3,C) × Gl(2,C) acting on the space
Sym(3,C)× Sym(3,C) of pairs of symmetric 3× 3-matrices by(

A,

(
α β
γ δ

))
7−→

(
(X,Y ) 7→

(
A(αX + βY )At, A(γX + δY )At

))
The action of this reductive group is pre-homogenous, and the discriminant is a reduced
irreducible divisor of degree 12, which is linear free.

4. A series of non-reductive linear free divisors: As an example of a non-reductive linear free
divisor, consider the space V of symmetric k × k-matrices S, and the group G of upper triangular
k × k-matrices B, acting by B 7→ (S 7→ Bt · S · B). This action is pre-homogenous, and the
complement of the open orbit is a linear free divisor.

For later use we need to discuss a specific extension of the relative de Rham complex of the morphism
h : V → T = Spec C[t] (recall that h is a reduced equation for the divisor D). More precisely, we call

Ω•V/T (log D) :=
Ω•V (log D)

h∗Ω1
T (log {0}) ∧ Ω•−1

V (log D)
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together with the induced differential the relative logarithmic de Rham complex. (Notice that as we work
in the algebraic category in this section, Ω•V means algebraic differential forms). Then the following holds.

Theorem 27. [MdGS08, theorem 2.7]

1. Write E =
∑n
i=1 xi∂xi . There is a direct sum decomposition Θ(− log D) = OV E ⊕ Θ(− log h),

where Θ(− log h) := {θ ∈ Θ(− log D) | θ(h) = 0}. Dually, one obtains Ω1
V (log D) = OV dh

h ⊕
Ω1
V (log h), here Ω1

V (log h) := {α ∈ Ω1
V (log D) | iEα = 0}. Then Ω1

V/T (log D) ∼= Ω1
V (log h), and

more generally ΩkV/T (log D) ∼=
∧k ΩV (log h)

2. Let G be reductive. Consider the natural grading induced on ΩkV , ΩkV (log D) and ΩkV/T (log D),
then there is a graded isomorphism

H∗((h∗Ω•V/T (log D))0, d)⊗C OT ∼= H∗(h∗Ω•V/T (log D), d)

where the lower index 0 denotes the degree 0 part. In particular, the relative logarithmic de Rham
cohomology consists of free OT -modules of finite rank.

We notice the following consequence.

Corollary 28. [MdGS08, corollary 2.9] Let D be a reductive linear free divisor with equation h. Then
the character χh associated to the semi-invariant h is equal to the determinant of the representation
G→ Gl(V ).

The main goal of [MdGS08] is to discuss the deformation theory of linear functions relative to the
morphism h : V → T , and to construct Frobenius structures on these deformation spaces. In order to
do that, one has to chose a sufficiently generic linear function f , and this uses the dual representation of
the group G, as explained in the following lemma.

Lemma 29. [MdGS08, proposition 3.7] G acts on V ∗ by the dual action, with dual discriminant D∗ ⊂
V ∗. If GD is reductive, then (V ∗, D∗) is pre-homogenous. We call a linear form f ∈ V ∗ generic with
respect to h (or simply generic, if no confusion is possible) if f lies in the open orbit V ∗\D∗ of the dual
action. Notice that if G is not reductive, then it may happen that no generic linear form exist.
In the reductive case, there is a basis (ei) of V with corresponding coordinates (xi) (called unitary) such
that G appears as a subgroup of U(n) in these coordinates. Then D∗ = {h∗ = 0}, where h∗(y) := h(y),
(yi) being the dual coordinates of (xi).

In the sequel, we will always denote by h a reduced equation of D, and by f a generic linear form,
in particular, we will assume that such an f exists. We write S for the base space of the morphism
defined by f . We will be interested in the restriction of f to both the divisor D and a nonsingular fibre
Dt := h−1(t) for t 6= 0. The latter is a smooth affine variety, and the restriction of f to Dt has critical
points. One can also speak about critical points of the restriction f to D, in the stratified sense. Finally,
we are interested in the behavior of f at infinity (inside Dt).

Proposition 30. [MdGS08, proposition 3.5, proposition 3.15] Let D be linear free and f generic. Then

1. Write Dt := h−1(t) for t 6= 0 for a Milnor fibre of h, then the restriction f|Dt has n distinct
non-degenerate critical points.

2. There is a Whitney regular stratification of D such that the restriction of f to all open strata is
regular. Hence, the only critical point of f on D in the stratified sense is the origin in V .

3. For any t 6= 0, the restriction f|Dt : Dt → C is cohomologically tame in the sense of [Sab06].

Notice that the first and the second statement are actually used in the proof of the third one.

Proposition 31. [MdGS08, proposition 3.4, proposition 3.5] Let D be linear free and f generic. Con-
sider the deformation functor of deformations of the (analytic) germ f : (V, 0)→ (S, 0) modulo analytic
coordinate changes respecting the morphism h. The tangent space to this functor is given by

T 1
Rh =

f∗ΘS

df(Θ(− log h)) + (h)
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We also consider the module
T 1
Rh/T =

f∗ΘS

df(Θ(− log h))

Then h∗T 1
Rh is an n-dimensional C-vector space equal to the fibre over 0 ∈ T of the free rank n OT -module

h∗T 1
Rh/T . A C- resp. OT -basis of h∗T 1

Rh resp. h∗T 1
Rh/T is given by (f i)i∈{0,...,n−1}.

Then semi-universal deformation space of the (unobstructed) functor of deformations of f module Rh-
equivalence is a smooth n-dimensional germ.
We can also consider a semi-universal deformation space (in the sense of [DS03]) of the restriction
f|Dt for any t 6= 0. Then the tangent space at 0 of this space is canonically isomorphic to the fibre
(h∗T 1

Rh/T (f))|t.

3.2 Gauß-Manin-systems and Frobenius structures

For the later construction of Frobenius structures, we need to consider families of Gauß-Manin-systems,
associated to the pair of functions (f, h). These are naturally constructed as the cohomology sheaves of
direct images of D-modules. Namely, the following holds.

Definition-Lemma 32. [MdGS08, section 4], [Sev09, lemma 7]

1. Consider the morphism Φ := (f, h) : V → S × T , and the cohomology module M(∗D) :=
H0(Φ+(OV (∗D)). This is a regular holonomic DS×T -module.

2. Denote by G(∗D) the partial (with respect to s) localized Fourier-Laplace transform of M(∗D),
i.e., G(∗D) = M(∗D) ⊗C C[∂−1

s ] as C vector spaces, equipped with an C[τ, ∂τ , t, ∂t]-action where
t, ∂t acts as before and where by definition τ · := ∂s, ∂τ := −s·. Putting z := τ−1, then G(∗D) is
C[z, ∂z, t, ∂t]-holonomic, with singularities along ({0,∞}×T )∪ (C×{0}), regular along z =∞ and
{t = 0, z 6= 0}. Moreover G(∗D) is localized along ({0,∞}× T ) ∪ (C× {0}), i.e., C[z, z−1, t, t−1]-
locally free of rank n. We call G(∗D) the family of Gauß-Manin systems associated to (f, h).

3. Define

G0(log D) :=
H0(V,Ωn−1

V/T (log D))[z]

(zd− df∧)H0(V,Ωn−2
V/T (log D))[z]

to be the family of Brieskorn lattices associated to (f, h). G0(log D) is a C[z, t]-lattice in G(∗D),
and comes equipped with a meromorphic connection

∇ : G0(log D) −→ G0(log D)⊗ z−1Ω1
C×T (log({0} × T ) ∪ (C× {0})) .

In order to get more concrete information on both G(∗D) and the lattice G0(log D), we need to find a
basis with specific properties. This is done in the following result.

Proposition 33. [MdGS08, proposition 4.5, corollary 4.12] Let D be any linear free divisor and let f
be a generic linear function. Then

1. There is a C[z, t, t−1]-basis ω(2) of G0(∗D) := G(log D)⊗C[z,t] C[z, t, t−1] such that

∇∂z (ω(2)) = ω(2) ·
(
A0

z
+A(1)

∞

)
1
z

where

A0 :=


0 0 . . . 0 c · t
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

 ,

for some c ∈ C and A
(2)
∞ = diag(ν(2)

1 , . . . , ν
(2)
n ). For any t 6= 0, (ν(2)

1 , . . . , ν(2)) is the spectrum at
infinity (in the sense of [Sab06]) of the tame function f|Dt , in other words, ω(2) is a good basis in
the sense of [Sai89] of the restriction (G0(log D),∇)|C×{t}.
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2. There is a C[z, t]-basis ω(1) of G0(log D) such that

∇∂z (ω(1)) = ω(1) ·
(
A0

z
+A(1)

∞

)
1
z

where A0 is as before and A
(1)
∞ = diag(ν(1)

1 , . . . , ν
(1)
n ) and where (ν(1)

1 , . . . , ν
(1)
1 ) is the spectrum at

infinity of (G0(h),∇) := (G0(log D),∇)|C×{0} (called logarithmic Brieskorn lattice of h in [Sev09]),
that is, ω(1) is a good basis of (G0(log D),∇)|C×{0}.

3. If D is reductive, then moreover

∇(ω(1)) = ω(1) ·
[
(A0

1
z

+A(1)
∞ )

dz

z
+ (−A0

1
z

+A′∞)
dt

nt

]
(9)

where A′∞ := diag(0, 1, . . . , n− 1)−A(1)
∞ .

Rermark: In the proof of this result, one actually first constructs the basis ω(1) of G0(log D), and then
this basis can be used to obtain the basis ω(2) in part 1. of the above proposition, which explains the
choice of the names for these bases.
A rather easy consequence of part 3. of the above result is the following statement, which links the
class of (linear functions on fibrations defined by) linear free divisors to the theory of variations of
TERP-structures as discussed in chapter 2.

Corollary 34. [MdGS08, proposition 4.5 (v)] Let D be reductive. Consider the mapping u : S′ := C∗ →
T ′ := T\{0}, defined by t := sn, where s is a coordinate on S′. Then the analytic bundle associated to
u∗(G0(∗D),∇) underlies a Sabbah orbit of TERP-structures (see definition 9).

Using the good bases from above, we can attach Frobenius structures to the various deformation spaces
considered in subsection 3.1.

Theorem 35. [MdGS08, theorem 5.1, theorem 5.7] Let D be a linear free divisor, and f generic. Then
the following holds.

1. Fix any t ∈ T\{0}, and write Mt for a semi-universal unfolding space of f|Dt . Suppose that the
minimal spectral number mini∈{1,...,n}(ν

(2)
i ) is of multiplicity one. Then

(a) We have that z−n−1P (ω(2)
i , ω

(2)
j ) ∈ C, i.e, the extension ⊕ni=1OP1×{t}ω

(2)
i of (G0(∗D))|C×{t}

is compatible with P as required in the description before theorem 24.

(b) Any of the sections ω(2)
i is homogenous and primitive and yields a Frobenius structure on Mt.

2. In general (i.e., without any hypotheses on the minimal spectral number), any section ω(2)
i such that

ν
(2)
i = minj∈{1,...,n}(ν

(2)
j ) is homogenous and primitive for the canonical extension of G0(∗D)|C×{t}

referred to in theorem 25, 2., and hence yields a Frobenius structure on Mt (possibly different from
the one in 1.).

3. Let D be reductive. Under an additional assumption on the behavior of P when t → 0, which is
conjectured to be true in all cases (see [MdGS08, conjecture 5.5]), there is a Frobenius structure
on the Rh-semi-universal deformation space attached to the restriction f|D. It is constant, i.e., its
potential is a polynomial of degree three when expressed in flat coordinates.

Remark: As we have seen in the beginning of this section, the normal crossing divisor is the simplest
example of a linear free divisor. In this case, the Frobenius structures form the last theorem are known
and relevant in Mirror symmetry, more precisely, consider the total cohomology space H∗(Pn−1,C) of the
n−1-dimensional projective space. Chose the basis ηi := (c1(On−1

P ))i of H∗(Pn−1,C) with corresponding
coordinates ri and consider the projection mapping

p : H∗(Pn−1,C) −→ H̃ := H∗(Pn−1,C)/H2(Pn−1,Z) ∼= H0(Pn−1,C)× C∗ ×
⊕

i>2H
2i(Pn−1,C)

= Spec C[r0, q, q
−1, r>1] ⊂ Ĥ := Spec C[r0, q, r>1]

(r0, . . . , rn−1) 7−→ (r0, q := er1 , r2, . . . , rn−1)
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Then it is well known that for any point x ∈ H̃, the germ (H̃, x) carries a Frobenius structure, defined by
quantum multiplication (see, e.g., [FP97], [Aud] or [Gue08]). Mirror symmetry for the projective space
now states that this Frobenius structure is exactly the one from theorem 35, 1. from above for the point
t := q, if one chooses ω(2)

1 as primitive and homogenous section. The proof consists of a computation of
the small quantum cohomology of Pn−1, which, when expressed as the Givental connection is exactly the
connection on the bundle G0(logD) from proposition 33, 3. Notice that the mirror correspondence gives
a stronger result than just an equivalence of germs of Frobenius structures in this case: As explained in
[MdGS08, section 5.3], the different germs (Mt, 0) glue to a Frobenius manifold with a logarithmic pole
along t = 0 (in the sense of [Rei09]). The same logarithmic structure is obtained on the space Ĥ, along
the divisor Ĥ\H̃, due to the particular form of the Gromov-Witten potential, more precisely, due to the
divisor axiom for Gromov-Witten invariants.

3.3 Bernstein polynomials

The Bernstein polynomial is a classical invariant attached to any polynomial or holomorphic function.
The following is due to Bernstein ([Ber72]) in the algebraic case, and to Björk [Bjö79] in the analytic
case.

Theorem 36. Let h be an element of C{x1, . . . , xn} resp. C[x1, . . . , xn]. Then there is P (xi, ∂xi , s) ∈
D[s] and B(s) ∈ C[s] such that

P (xi, ∂xi , s)h
s+1 = B(s)hs.

where D is the ring of germs of holomorphic differential operators at the origin of Cn resp. of algebraic
differential operators on Cn.
All polynomials B(s) ∈ C[s] having this property form an ideal in C[s], and we denote by bh(s) the
unitary generator of this ideal. bh(s) is called the Bernstein polynomial of h.

If h defines a linear free divisor, then the theory of pre-homogenous vector spaces shows that the functional
equation defining bh(s) is of a particular type.

Theorem 37 ([SK77], [Gyo91], [GS08]). Let D = h−1(0) be a reductive linear free divisor, then the
operator P appearing in Bernstein’s functional equation is given by P := h∗(∂x1 , . . . , ∂x1) (remember
that h∗(y) = h(y), where xi are the unitary coordinates and yi are their duals). In particular, it is an
element of C〈∂x1 , . . . , ∂xn〉. Moreover, the degree of bh(s) is equal to n and the roots of bh(s) are contained
in the open interval (−2, 0) and are symmetric around −1. In particular, −1 is the only integer root.

This result describes the Bernstein polynomial of reductive linear free divisors quite precisely, however, it
is almost impossible to calculate these polynomials explicitly in examples. The following theorem offers a
way to do these calculations, moreover, it yields a variant of a classical result of Malgrange which relates
the Bernstein polynomial and the spectral numbers for isolated hypersurface singularities.

Theorem 38. [Sev09, theorem 13, theorem 16] Let D be a reductive linear free divisor with defining
equation h and choose a generic linear function f . Then

1. The restriction G0(log D)|z=1, i.e., the top cohomology Hn−1(h∗Ω•V/T (log D), d − df∧) of the
twisted relative logarithmic de Rham complex is a free OT -module of rank n, equipped with a mero-
morphic connection ∇ with logarithmic pole along 0 ∈ T . Write b∇(s) for the spectral polynomial
at t = 0, i.e., b∇(s) =

∏n
i=1(s − αi), where (α1, . . . , αn) are the eigenvalues of the residue endo-

morphism of ∇ at zero. Then we have b∇(s) = bh(s− 1).

2. Consider the logarithmic Brieskorn lattice G0(h) := (G0(log D)|t=0,∇) (Notice that G0(h) does
not depend on the choice of f in V ∗\D∗). Then ∇ has a regular singularity on G0(h) at z = 0.
Consider the saturation G̃0(h) :=

∑
k≥0(∇z∂z )kG0(h), which has a logarithmic pole at z = 0.

Let b eG0(h)(s) be the minimal polynomial of the residue endomorphism of ∇z on G̃0(h). Then
b eG0(h)(ns+ 1) = bh(s).

Using this result, and some of the computations from [MdGS08], we obtain the Bernstein polynomials
for some of the examples of linear free divisors mentioned at the beginning of this section (see table 1).
We finish by outlining an observation and a precise conjecture on both the Bernstein polynomial for a
linear free divisor and the group action on the abient space.
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linear free divisor Bernstein polynomial of h

An - quiver (s+ 1)n

Dm - quiver
(
s+ 4

3

)m−3 · (s+ 1)2m−4 ·
(
s+ 2

3

)m−3

E6 - quiver (s+ 7
5 ) · (s+ 4

3 )4 · (s+ 6
5 ) · (s+ 1)10 · (s+ 4

5 ) · (s+ 2
3 )4 · (s+ 3

5 )

?m - quiver
∏m−3
l=0

(
s+ 2(m−1)−l

m

)l+1

· (s+ 1)2(m−1) ·
∏m−3
l=0

(
s+ m−1−l

m

)m−l−2

discriminant in S3((C2)∗)
(
s+ 7

6

)
· (s+ 1)2 ·

(
s+ 5

6

)
discriminant of

Sl(3,C)×Gl(2,C) action
on Sym(3,C)× Sym(3,C)

(
s+ 5

4

)2 · (s+ 7
6

)2 · (s+ 1)4 ·
(
s+ 5

6

)2 · (s+ 3
4

)2
Table 1: Bernstein polynomials for some examples of reductive linear free divisors

Conjecture 39. Let G be reductive, (V,G) be pre-homogenous and suppose that the discriminant D ⊂ V
is a linear free divisor with defining equation h. Denote by T ⊂ G a maximal torus. Then there is a T -
invariant linear subspace WT ⊂ V , with W 6⊂ D and dim(T ) = dim(WT ) (hence, of minimal dimension).
It then follows that the restriction h|WT

is a monomial. Moreover, the multiplicity of −1 of bh(s) equals
dim(T ).

Remark: The interest of the above conjecture is motivated by comparing the situation studied in
[MdGS08] to the one from mirror symmetry for weighted projective spaces, hence, by generalizing the
observation from the end of subsection 3.2. As discussed in detail in [DS04] and [Man08], the mirror
of the orbifold quantum cohomology of the weighted projective space P(w0, w1, . . . , wn) is given by the
restriction of a generic linear polynomial to the (non-singular) fibres of the morphism g : Cn → C given by
g =

∏n
i=0 x

wi
i . Now orbifold quantum cohomology decomposes into several pieces, the so-called twisted

sectors. On the singularity side, these sectors are visible in the spectrum at infinity of the tame function
(the restriction of the linear function to a Milnor fibre of g). A similar structure of the spectral numbers
is observed for linear free divisors, and in particular, it would follow from the above conjecture that the
multiplicity of the root −1 of bh is exactly the dimension of the cohomology of the untwisted sector of
the (various) weighted projective spaces appearing as mirrors of the monomials obtained by restricting
h to torus invariant subspaces. One may also ask how the the other roots of bh resp. the corresponding
spectral numbers behave when h is restricted to such a torus invariant subspace of minimal dimension,
or whether there is any deeper relation between the Frobenius structures for a linear function f on a
Milnor fibre of the divisor D and the Frobenius structure of f|WT

restricted to the Milnor fibre of the
non-reduced divisor g−1(0) ⊂WT , i.e., the mirror of the corresponding weighted projective space.
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