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Abstract

We consider mixed Hodge module structures on GKZ-hypergeometric differential systems. We
show that the Hodge filtration on these D-modules is given by the order filtration, up to a suitable
shift. As an application, we prove a conjecture on the existence of non-commutative Hodge structures
on the reduced quantum D-module of a nef complete intersection inside a toric variety.
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1 Introduction

In a series of papers Gel’'fand, Graev, Kapranov and Zelevinskii |[GIGZ87], |[GfZK89] introduced a system
of differential equations which generalize the classical differential systems satisfied by the hypergeo-
metric functions of Gaufl, Appell, Bessel and others. These generalized systems are nowadays called
GKZ-systems. The initial data of a GKZ system consists of a d X n integer matrix and a parameter
vector 3. Although the definition of a GKZ system has a combinatorial flavor it was early realized that
at least for non-resonant parameter vectors § GKZ-systems come from geometry [GKZ90], i.e. they are
isomorphic to a direct image of some twisted structure sheaf on an algebraic variety. In [Reild], the
first-named author has shown that certain GKZ-systems actually carry a much richer structure, namely,
they underlie mized Hodge modules in the sense of M. Saito (see [Sai90]). One of the main goals of this
paper is the explicit calculation of the corresponding Hodge filtration on these modules.

An important application of GKZ systems is mirror symmetry for weak Fano complete intersections in
toric varieties. We have shown in our previous papers [RS15, [RST7] how to express variants of the mirror
correspondence as an equivalence of differential systems of “GKZ-type”. However, an important point
was left open in these articles: The mirror statements given there actually involve differential systems
(i.e., holonomic D-modules) with some additional data, sometimes called lattices. These are constructed
by a variant of the Fourier-Laplace transformation from regular holonomic filtered D-modules. The fil-
tration in question is the Hodge filtration on these modules, but a concrete description of it is missing
in [RST5L [RS17]. As a consequence, the most important Hodge theoretic property of the differential
system entering in the mirror correspondence was formulated only as a conjecture in [RS17] (conjecture
6.15): the so-called reduced quantum D-module, which governs certain Gromov-Witten invariants of nef
complete intersections in toric varieties conjecturally underlies a wvariation of non-commutative Hodge
structures. We prove this conjecture here (see Theorem , it appears as a consequence of the main
result of the present paper, which determines the Hodge filtration on the GKZ-systems. More precisely,
as GKZ-systems are defined as cyclic quotients of the Weyl algebra, we obtain (Theorem that
this Hodge filtration is given by the filtration induced from the order of differential operators up to a
suitable shift. In some sense, this finishes the Hodge theoretic study of mirror symmetry for this class
of varieties since we can now express the mirror correspondence as an isomorphism of non-commutative
Hodge structures, which are the correct generalization of ordinary Hodge structures in the case where
the underlying differential equations acquire irregular singularities, as it is the case for the quantum
D-module of weak Fano varieties (in contrast to the Calabi-Yau case).

Another application of our main result, which can be found in the two papers [CnDS19] and[CnDRST9],
is the calculation of the so-called irregular Hodge filtration on certain 1-dimensional classical hyperge-
ometric modules. The irregular Hodge filtration has been introduced by C. Sabbah (see [Sabl§]) in
order to attach Hodge-type numerical invariants (namely dimensions of graded parts of a filtration) to
differential systems acquiring irregular singularities. In geometric situations, like those where regular
functions on quasi-projective manifolds are studied as Landau-Ginzburg models of certain quantum co-
homology theories, the irregular Hodge filtration has a concrete description using certain logarithmic de
Rham complexes, as has been shown by Esnault, Sabbah and Yu ([ESY17]), see also the discussion in
[KKP17]). Classical hypergeometric systems are also the most prominent example of rigid D-modules
(see [Kat90])), so the computation of these invariants for them is of particular interest. It turns out
that confluent classical hypergeometric modules (these are precisely those with irregular singularities)
are obtained from GKZ-systems by a dimensional reduction and a Fourier-Laplace transformation. Us-
ing our result (i.e., Theorem , one can explicitly describe the irregular Hodge filtration (and give
closed formulas for irregular Hodge numbers) of certain such systems (see [CnDS19, Theorem 4.7] and
[CuDRS19, Theorem 5.9] for more details).

Let us give a short overview on the content of this article and the precise statements of the main results.
Notice that section [2] below provides a detailed description of these results and parts of their proofs for
rather simple example, which is related to the quantum D-module of P!. We advise the reader to go
through this example in order to understand the strategy of the proof in the general case in the main
body of this article.

The main result of this paper is obtained in two major steps, which occupy section [4 resp. sec-



tion First we study embeddings of tori into affine spaces given by a monomial map ha : T =
(€94 — O™ (t1,...,tq) = (t%,...,1%), where t% = szl t?" and where the matrix of columns
A = (a;)i=1,...n € M(d x n,Z) satisfies certain combinatorial properties related to the geometry of the
semi-group ring C[INA]. Consider the twisted structure sheaf O:’?« :=Dr/Dr (0 t1 + P1, .-+, O ta + Ba)-
It was shown in [SWOQ9] that the direct image h A+Og has an explicit description as a Fourier-Laplace
transformed GKZ-system Mﬁ (cf. Definition in case the parameter vector 8 is not strongly reso-
nant (cf. Definition . We consider the corresponding direct image H°(h AJ’C? B ) in the category of
complex mixed Hodge modules, and calculate its Hodge filtration (cf. Theorem in case that the
parameter vector [ lies in the set of admissible parameters 204 (cf. Formula ) More precisely, this
first result can be stated as follows.

Theorem (Theorem below). For 8 € 24 the Hodge filtration on ./\;li is equal to the order filtration
shifted by n — d, i.e. 5 5
H > _ prord £’
Foln—ayMy = FJ7 MYy

If the matrix A we started with satisfies a homogeneity property, then the underlying D-module of this
mixed Hodge module is a (monodromic) Fourier-Laplace transformation of the GKZ-system we are inter-
ested in. It should be noticed that Theorem [£:17]is of independent interest, its statement is related to the
description of the Hodge filtration on various cohomology groups associated with singular toric varieties.
We plan to discuss this question in a subsequent work. The main point in Theorem to determine
the canonical V-filtration on the direct image module along the boundary divisor im(ha)\im(ha), i.e.,
the calculation of some Bernstein polynomials.

The second step, carried out in section [f] consists in studying the behavior of a twisted structure sheaf on
a torus under a certain integral transformation which generalizes the Radon transformation in [Reil4].
It is well-known (see [Bry86] and [DEO3]) that there is a close relation between the Fourier-Laplace
transformation and the Radon transformation for holonomic D-modules, however, the former does not
a priori preserve the category of mixed Hodge modules whereas the latter does. This fact is one of the
main points in the proof of the existence of a mixed Hodge module structure on GKZ-systems in [Reil4].
We calculate the behaviour of the Hodge filtration under the various functors entering into the integral
transformation functor, an essential tool for these calculations is the so called Euler-Koszul-complez (or
some variants of it) as introduced in [MMWO05]. We finally get the following statement for the Hodge

filtration on the GKZ system M% (cf. Theorem|5.35). We call a matrix homogenous if all of its columns
lie in an affine hyperplane. Moreover, an integer matrix is called normal, if the semi-group generated
by its columns is the intersection of the cone generated by these columns with the lattice generated by
them (see Formula below).

Theorem (Theorem m below). Let A be a homogeneous, normal (d + 1) x (n + 1) integer matriz,

5 € Az and By € (—1,0]. Then the GKZ-system M% carries the structure of a mized Hodge module
whose Hodge filtration is given by the shifted order filtration, i.e.

(M, Py = (M5, P

The second last part of section [5| deals with the Hodge module structure on the holonomic dual GKZ-
system (which, under the assumptions on the inital data, is also a GKZ-system). The last subsection of
section [5| explains how one can deduce from our main result the computation of Batyrev (see [Bat93]) of
the Hodge filtration on the relative cohomology of smooth affine hypersurfaces in algebraic tori.
Finally, in section |§| we explain the above mentioned conjecture from [RS17] and show how its proof
can be deduced from our main result (cf. Theorem . To formulate this result, consider a smooth
projective toric variety Xy and a split globally generated vector bundle &£ satisfying some positivity
assumptions (ensuring, in particular, that the subvariety Y := s71(0) for a generic section s € I'(Xg, £)
is smooth weak Fano). Then we have the reduced quantum D-module QDM(Xy, £) (see [RS1T, Section
4.1]) and the mirror map Mir (see Theorem [6.5 below as well as [RS17, Theorem 6.9] and the references
therein). We get the following result.

Theorem (Theorem below). Let Xx be a k-dimensional smooth, toric variety, let Lq,...,L; be
globally generated line bundles such that —Kx,, — & is nef, where £ = @ézlﬁj, L; being ample for



j=1,...,1. Then the smooth R¢, xxme-module (ide, xMir)*QDM(Xyx, £) underlies a variation of pure
polarized non-commutative Hodge structures.

While we were working on this paper, a preprint of T. Mochizuki ([Mocl5b]) appeared where [RS17,
Conjecture 6.15] is shown with rather different methods. The arguments in his paper work entirely in the
category of mixed twistor modules, using the full strength of [Mocl5al. It seems possible from his ap-
proach to obtain our main result by considering equivariant twistor modules (see [MocI5b, Section 6.4]).
However, this treatment of the regular case in loc.cit. (i.e., the case of mixed Hodge modules) seems to
be done in a more restrictive setup, in two ways: First of all, there is an extra assumption ([Mocl5bl
Assumption 6.51]) excluding the calculation of the Hodge filtration on GKZ-systems for examples com-
ing from local mirror symmetry (however, the mirror symmetry consequence, i.e., the proof of [RS17,
Conjecture 6.15] is coverd by [MocI5b]). On the other hand, there is no discussion on GKZ-systems
(or its twistor versions) for non-zero parameter vectors § in loc.cit. in contrast to our main result (i.e.,
in constrast to Theorem [5.35] which holds for non-zero parameters satisfying a natural combinatorial
condition). Besides, we feel that the calculation of the Hodge filtration on GKZ-systems which only
uses properties of the category of mixed Hodge modules (not passing via twistor modules) may be of
independent interest.

To finish this introduction, we introduce some notation and conventions used throughout the paper. Let
X be a smooth algebraic variety over C of dimension dx. We denote by M (Dx) the abelian category of
algebraic left Dx-modules on X and denote the abelian subcategory of (regular) holonomic D x-modules
by My, (Dx) (resp. (M,(Dx)). The full triangulated subcategory in D*(Dx), consisting of objects with
(regular) holonomic cohomology, is denoted by D% (Dx) (resp. D%, (Dx)).

Let f: X — Y be a map between smooth algebraic varieties. Let M € D*(Dx) and N € D*(Dy), then
we denote by

L L
f+M = Rf.(Dy.x @ M) resp. fTM:=Dx_y® [ 'M[dx — dy]

the direct resp. inverse image for D-modules. Recall that the functors fy, fT preserve (regular) holo-
nomicity (see e.g., [HTTO8, Theorem 3.2.3]). We denote by D : D% (Dx) — (D%(Dx))°PP the holonomic
duality functor. Recall that for a single holonomic Dx-module M, the holonomic dual is also a sin-
gle holonomic Dx-module ([HTTO8, Proposition 3.2.1]) and that holonomic duality preserves regular
holonomicity ( [HTTO8, Theorem 6.1.10]).

For a morphism f : X — Y between smooth algebraic varieties we additionally define the functors
fri=DofioDand ff:=Do f+oD.

Let MF(Dx) be the category of filtered Dx-modules (M, F') where the ascending filtration F, satisfies
1. F;M =0forp<k0
2. U, /M =M
3. (F,Dx)Fy;M C FpyyM for p € Zsp, g€ Z

where FoDx is the filtration by the order of the differential operator.

We denote by MHM(X) the abelian category of algebraic mixed Hodge modules and by D*MHM(X)
the corresponding bounded derived category. The forgetful functor to the bounded derived category of
regular holonomic D-modules is denoted by

Dmod : DP°MHM(X) — D%, (Dx).
For each morphism f : X — Y between complex algebraic varieties, there are induced functors
fe, fi : D°MIHM(X) — D*MHM(Y)

and
£, ' DP°MHM(Y) — D*MHM(X),



which are interchanged by D. The functors f,, fi, f*, f* lift the analogous functors f, I, i f+ on
Dﬁh(’DX). Let Qg be the unique mixed Hodge structure with GrZV = Grf =0 for 7 # 0 and underlying
vector space Q. Denote by ax : X — {pt} the map to the point and set

H H
QX = a’;(th .

The shifted object PQY := Q¥ [dx] lies in MHM(X) and is equal to (Ox, F, Qx[dx], W) with Grfj =0
for p # 0 and Grfv =0 for i # dx. We have DQY ~ a!XQg and, since X is smooth, the isomorphism

DQY =~ Q¥ (dx)[2dx] . (1)
Here (dx) denotes the Tate twist (see e.g., [Sai90, page 257]).

We also have to consider the category MHM(X, C) of complex mixed Hodge modules which can be
defined as follows (see [DS13, Definition 3.2.1]): First note that one can naturally extend the notion of
a Q-mixed Hodge module (i.e., an object of MHM(X)) to R-mixed Hodge module, due to the work of
Mochizuki on mixed twistor modules (see in particular [MocI5al Section 13.5], where the notion of a K-
mixed Hodge module is considered, K being any subfield of R). Then we say that a filtered Dx-module
(M, F,) underlies a complex mixed Hodge module if it is a direct summand of a filtered D x-module that
underlies an R-mixed Hodge module. Many properties of the category of R-mixed Hodge modules carry
over to MHM (X, C) since they are stable by direct summands.

Let T = ((D*)d be a torus with coordinates ti,...,tq and 8 € R%. We denote by O? the Dp-module

OF = Dp /(O ti + Bi)iz1,....1)

and by C?’B the complex Hodge module ((95:, F,W) with Gri Cg’ﬁ = 0 for p # 0 and Grfv C?’ﬁ =0
for i # d. Finally we set ng’ﬁ = Cg’ﬁ[dT].

Acknowledgments: We thank Takuro Mochizuki, Claude Sabbah and Uli Walther for many stimulating
discussions on the content of this paper.

2 A guiding example

In this section, we intend to discuss a particular example, related to the quantum differential equation
of P!, where most of the techniques used in the main body of the paper can be written down quite
explicitly. We hope that this section will help the reader to find his way through the technical difficulties
of the paper.

Let A be the following 2 x 3-matrix with integer entries:

1 1 1
01 —-1)°

As explained in Definition below, any d x n-integer matrix A together with a vector 8 € C? defines
a cyclic Dgrn-module called a GKZ-system and denoted by Mﬁ. For the above matrix, this system for
the vector § = 0 is given by

MO = Des/ (03, — O, 00y, AoOx, + A0, + A20x,, A0, — A20h, )

It is well known that M% is holonomic (see [Ado94]) and regular ([SWO0§]). Moreover, it follows from

[Reildl Theorem 3.5] that M% underlies a mixed Hodge module HM% € MHM(C?). The purpose of
this introductory section is to explain and partly prove the following statement, which is a very special
case of the main theorem of this paper (Theorem [5.35).

Theorem 2.1. We have an isomorphism of filtered Dgs-modules
(MG, FT) = (MG, FI9),
where FH denotes the filtration such that the filtered module (M%, F1) underlies the mized Hodge module

HM% and where F™ is the filtration induced on M% by the filtration on Dgs by orders of differential
operators.



The proof of this theorem will be done in several steps that parallel the main steps of the proof of
Theorem The two major simplifications are that we are dealing with the very special matrix A
whereas in Theorem any (d + 1) x (n + 1)-matrix A satisfying some combinatorial conditions is
considered, and moreover we restrict to the parameter value 5 = 0 (compare with the general definition
of GKZ-systems M% in Definition resp. with the Definition for the sheaf M%) This avoids

considering some rather involved combinatorial condition relating A and (8 (see the definition of the set
27 in Equation below).
We first consider the morphism

hz: (C)? — C=W
(to,t1) = (to,to-t1,to -ty ") =: (wo,wr,ws)

where the exponents of the monomials in the components of the map are exactly the columns of A.
As explained in more detail in Theorem [3.9]and Proposition [3.11] below, it follows from a result of Schulze
and Walther ([SWQ9]) that we have the following isomorphism of Dy,-modules

hA"JrO(@*V = hg’Jr'D(C*)z/(atoto +2,0,t1 — 1)

!
~ 2 - A
= Dw/ (U)O — wWi1Wa, awowo =+ 8w1w1 + 81,,2102, 8w1 wy — 8w2w2) = M%

The main point in this result is to show that (left) multiplication by wy is invertible on M%, then the
isomorphism follows since the map A 3 can be decomposed as

hN
hi:(C)? ok e 3w

where both h 7 | and h ; , are embeddings and where h 3, sends (to,t1) to (to,to-t1,t0" tl_l) and is closed
(this follows since the map C* — C2,t + (t,t!) is a closed embedding), whereas h3 5 is the canonical

open embedding of C* x C? into W.
A second consequence of Proposition below is that M% underlies a mixed Hodge module on W,

namely the object hg,*pQg € MHM(W). A first step to prove Theorem above is to compute
the Hodge filtration on M%. This task can be divided into two steps: First we have to compute
the Hodge filtration on the module *M% = hA’,17+O(C*)2 which underlies the mixed Hodge module

hz, ,PQY € MHM(C* x C?). This is done via a rather direct argument since h, is closed. The second
step, which is more delicate, is to obtain from this the Hodge filtration on hA 5 +*./\;l% = M%

Here we are faced with the fundamental problem of extending a mixed Hodge module from the comple-
ment of a (smooth) divisor to the total space. While this operation is easily understood at the level of
D-modules, one cannot simply use the direct image functors for O-modules to calculate the extension
of the filtration steps of the Hodge filtration since those are by definition O-coherent, a property that is
lost under direct images of open embeddings. As is explained in more detail at the beginning of section
[4.3] this problem is solved by intersecting the direct image with the canonical V-filtration along the
divisor in question. In order to compute the Hodge filtration on h 3 Aot MO e thus have to calculate
this V-filtration along w; = 0.

Notice that in the main body of the text, we follow a slightly different strategy, due to the fact that
the factorization of hz used above into a closed an open embedding may look different depending on

the shape of the matrix A In general, one can always consider the factorization into a map between
tori, which is a closed embedding (which would be the map from (C*)? to (C*)? in the above example)
followed by the canonical open embedding from the torus into affine space. The latter, however, is the
extension over a normal crossing divisor, which is not smooth. In order to apply the techniques sketched
above, one has to compose further with a graph embedding with respect to the equation of the normal
crossing divisor (see diagram ([23) and the arguments following it).

The first (easy) step of the calculatlon of the Hodge filtration on ./\/l ~ can be formulated as follows.



Lemma 2.2 (Compare Lemma below for the general case). The direct image H° hA 1 +O(@*)2 18
isomorphic to the cyclic Do« g2 -module

2
Derxez/ (W — wiws, Duwywo + O, W1 + Oy W2, Oy W1 — Oy wa)

and the Hodge filtration on this module is given, under this isomorphism, by the induced order filtration,
shifted by one, i.e., we have

F;IHohg,l,+O(C*)2 = F;f:{ [DC*x(D?/ (wg — Wi1Wa2, 6w0w0 + 8w1w1 + awzll}Q78w1wl — an’wQ)]

Proof. We can factor hz , further as h; , = hz, ohz,, where
hiy (@) — (€
(to,t1) +— (to,to-ti,to-t; ")

and where Eﬁl : (C*)3 < C* x €? is the canonical open embedding. Then since hjz, is a closed
embedding, we know that the support of *MY is disjoint from the divisor (C* x €*)\(C*)?, which
implies that F), il *M0~ = h~ FHp - i1 +(’)(C*)2. It therefore suffices to determine the filtration steps

Al x"p
F hz O (c*)2, or, more precisely, to show that

Al +

F;If}vlg’l_’_i_(?(@*y = F;i% [D(C*)s/ (w% — W W2, Oy Wo + Oy W1 + Oy Wa, Oy W1 — 8w2w2)]

Consider the coordinate change

¢:(C)° — (C)

(wo, w1, w2) (wo,wl/wo,wlwg/wo) : (w0, ut, ug)
so that (¢ o hz,)(to,t1) = (to,t1,1) and

(¢ o F}VL;{,I)+O(C*)2 = D(C*)S/(uz -1, auO’U,O + 2, aulul) = (D(@*)2/(au()’u,() + 2, 8u1ul)) [8u2]
According to [Sai93, Formula (1.8.6)], we have

p+1(¢ o hA 1)+O(C*)2 = Z F D(C*)Q/(auouo + 27 aulul) ((95;

P1+p2=p

Since Ff (D(cvys /(Bugtio; Ouyu1)) = Fr (Digxys /(ug o, Buy w1 ), we obtain from the above formula that
Fl(¢ OE2,1)+O(C*)2 = F (Dievye [/ (u2 — 1, Ougti, Oy ur)) -

Since ¢ is invertible, we obtain that the Hodge filtration on ¢ '((¢ o ﬁg D+0c)2) = E,Z 140z is
the order filtration on D¢-)s / (w% — WW2, Oy Wo + Oy W1 + Oy W, Oy W1 — 8w2w2), shifted by one. As

discussed above, the closure of the support of bz, Oz in C* x C? lies entirely in the torus (C*)3,
therefore, we obtain

FHhA 1 +O C*)2 — F;?idl [DC*XCQ/ (wg - w1w2vawow0 + 8wlujl + 8w2w27aw1w1 - 8w2w2)] 5

as required. 0

The next step is to compute the Hodge filtration of the open direct image hA2 Jr”‘/\;l?Z = M%. As

mentioned above, this needs information on the canonical V-filtration of the module M% with respect

to the smooth divisor {wg = 0}. More precisely, we have the following important formula (see Formula
below, as well as [Sai93, Proposition 4.2.]):

FAMS =3 00, (VOMG g, B MG )

>0



Hence we need to determine the object VOMOZ. For what follows, it is more convenient to work out
everything at the level of global sections. Since all modules we are considering here are defined on affine
spaces, this is obviously sufficient.

We refer to [MMO4] for details on the V-filtration. For what follows in this introduction, we only need that
VO9Dgs = Clwo, w1, wa](woduy, Ow, s Ow,) and the following characterization of the canonical V-filtration
of the holonomic module M% = F(C3,M%)7 copied from [MMO04, Definition 4.3-3, Proposition 4.3-9]
(notice again that we work at the level of global sections): For any m € M% we consider its Bernstein-
Sato polynomial b,,(z) € C[z], which is the unique monic polynomial of smallest degree satisfying the
functional equation by, (0w, wo)m € wg - VO(Dgs)m. The set of roots of by, (z) is denoted by ord(m).
Then we have

VO‘M% = {m € M% | ord(m) C [a,oo)} .

Our first step is to compute the Bernstein-Sato polynomial for the class [1] € M%. Here we have the
following result.

Proposition 2.3 (Compare Lemma below for the general case). Consider the class of 1 € Dgs in
the quotient M%, denoted by [1]. Then we have byy)(s) = s2.

Proof. Tt is sufficient to find a functional equation in Dgs of the form (9y,wo)% = wp - P + f%, where
f% = (wg — W1W2, Oy Wo + O, W1 + Oy Wa, Oy, w1 — 8w2w2)
and where P € Clwg, w1, w2]{woOuwy s Ow, , Ow, ). We will show that
(76101101 - (91”211)2)2 € wo - C[wlv w2]<aw1 ) 6w2> + j%v (3)

which suffices to conclude. We have

(=0, w1 — Ouppw2)?> = 204, O, wiWa + (O, w1)? + (O, ws)?

= 23 0w, Owy + (O, w1)? + (O, w2)?  mod f%

= 2w2  Ow, Owy + (O, W1 — Dy w2)? + 20, Oy W1 Wo

wg -4+ 0y, 0y, mod f%,
which shows Formula . O

Notice that the above calculation can be extended to any matrix A of the form

1 1 ... 1
~ 0 aiy ... QA1n
A =
0 aqy .- Qdn
where the columns of the matrix
aill e QA1n
A =
apl ... Qnpp

are the primitive integral generators of the fan of a smooth projective toric Fano manifold. Then one
has to consider the classical cohomology algebra of this manifold, which admits a toric description (see,
e.g. [Ful93, Section 5.2]), and the functional equation (i.e. the analogue of Formula [3) can be deduced
from the relations in this algebra. Notice also that this is in fact an argument which is a much simplified
version of the one used to prove Lemma below (actually, the proof of this lemma relies on the main
result of the separate paper [RSW18], which is based on general arguments from toric algebra, such as
Euler-Koszul complexes, toric modules etc.). Lemma is also more general in the sense that the matrix
considered there is not necessarily defined by the rays of a smooth toric variety.

We have the following consequence of the above calculation which gives complete control on the integer
part of the canonical V-filtration on M.



Corollary 2.4 (Compare Proposition below for the general case). Denote by Vi;LdM% the filtration
induced on M% by the V-filtration (with respect to wg) on Dgs. Then for all k € Z, we have Vi]:sz% =
VENO

e
Proof. The proof is more or less similar to the general case in Proposition below. In the case k > 0
any element [P] € V¥ dM% has an expression

l .
[P = [ wh(wodu,)' - P+ (R
i=0

where P; € Clwy, w2](Ow, , Ow,) and where [R] € V;]f;glM%. On the other hand, if k£ > 0, we can always
write an element [P] € V;;;CM% as

l
[P] =D 08 (w1d,)" - Pi] + [R).
1=0

where P; and [R] are as above. One easily deduces (see the calculations in the proof of Proposition
below) from the functional equation (Ow,wo)?[1] € VM proved in Proposition above that we have

ind

(Owowo — k)?[P] € Viai'MY for k > 0 and [P] €V} ,MS

(Owowo +k)?[P] € V,i*'M%  for k>0 and [P] €V, [MY
General considerations on the canonical V-filtration (see, e.g., [MMO04] section 4.2 and 4.3] and the
argument in the proof of Proposition then imply that Vi’deM% = VkM%. O
Finally, we arrive at the following first main step toward the proof of theorem

Proposition 2.5 (Compare Theorem below for the general case). Let A and hz : (€)% — € =W
be as above, then for any k € Z. we have the following isomorphism of Ow -modules

F;{hg’+0(c*)2 = F;))zc{ [Dw/ (wg — wWi1wWa, 8w0w0 + Bwlwl + 8w2w2, 8w1w1 — 8w2w2)}

Proof. The main tool to obtain a description of the Hodge filtration is Formula from above (see
[Sai93| Proposition 4.2.]) which at the level of global sections reads
H 3770 i 07770 H #3770
FINS =Y 0i, (V MY EE, Mg) . (4)
i>0
Recall from Lemma that for all | € Z we have
FIL = Fyrias,

In particular, since F];”d*M = 0 for all p < 0, we have FfM% =0 for all p < 1. On the other hand, we
have seen in Proposition that [1] € VOM%. Obviously, we have [1] € F(‘)”d*M%, which implies that

1] € FlHM%. Since M% is a cyclic Dy-module and since both filtrations F# and F°"® on it are good
filtrations, we obtain the inclusion
d 70 H 370
FIOM5 C Fy My

for all p € Z. It remains to show the reverse inclusion M% C F;ﬂ‘{M%. Using formula ([4) as well as
Corollary 2.4 and Lemma [2.2] this amounts to

7 0 a70 ordxn 10 ord 370
S oL, (VindlMg nFor Mg) c Forars.
i>0

We obviously have 8}, Fr{M% C FgriMY for all i so it only remains to show that

0 70 dxy70 d 70
VinaMz N F" M5 C F"" M7



for all I € Z. Consider any class [P] € V2

70 ord*) 10 : *Ar0 — aAy0r,,—1 ;
ina MG NEFP™* M. Since we have "M% = MZ[w, "], we can write

P=wy*Py+wy " P+

where P; € Clwy, w3]{Owy, Ow, > O, )- It follows that wf - [P] € Vi

ind

M%ﬂ Flo”"dM%. We thus have to prove
VieaM5 0 FPT MG € wi FPreMy.

for all k,l € Z. Take any class [Q] € V¥,

Q € VEDy N Fi Dy of [Q]. This means that Q = w - @, with @ € Fi D, as required. Hence we obtain

Q] € wé“FlOTdM%. It thus remains to show the existence of such a representative Q € V¥ Dy N F;Dyy,
and this is exactly the content of the next lemma. O

M% N Fl‘”dM%, then suppose that we can find a representative

Lemma 2.6 (Compare Proposition below for the general case). Let A be as above, then for all
k,l € Z, the morphism 5 5
V¥Dw N FDw — V5§ ,M% 0 FP MG

1S surjective.

Proof. The proof relies on the theory of Grobner bases in the Weyl algebra. We will not give any
definition here, but we refer to subsection for details about monomial orders and Grobner bases in
the non-commutative setup.

Consider any class m € Vi ,M% N Fr*M%. Then we can find P € F;Dw and Q € V*Dy such that

[P] = [Q] = m, that is, P = Q + i for some
7 S I:% = (U}g — wW1wWa, 8w0w0 + 8w1w1 + 8w2w2, &wlwl — 8w2w2) .

We chose a minimal r € IN with Q € F,.Dy. If r <, we are done since then Q € V¥ Dy N F;Dyy is the
preimage of m we are looking for. Hence suppose r > [. It is easy to see that then i € F,.Dy, and the
class of i in Grﬁ7 Dy is non-zero. For any operator R € Dyy, write

o(R) € Grl Dy = Clwo, w1, ws, &0, &1,&] =: Cluw, ]

for its symbol. The three generators of f% from above form a Grobner basis of this ideal with respect to
the partial ordering given by the weight vector (0,1) (i.e. where w; has weight 0 and 9, has weight 1),
notice that this weight vector induces the filtration F on Dyy. This can be directly shown by a Macaulay?2
calculation, the corresponding general result is Corollary [£.13] below, where we treat a slightly different
situation however (we add a column to our matrix which is the sum of all other columns, this corresponds
to composing with the graph embedding of the equation of a normal crossing divisor, see also the remarks
before Lemma above).

We can therefore conclude that there is an expression

o(i) = 11 - (w2 — wiws) + 19 - (Egwo + Erwy + Eows) + 13 - (E1wy — Ews).

with 41,42, i3 € Clw, &]. Let i1,i9,i3 € Dy be the normally ordered operators obtained from i1, 12,13 by

replacing & by 0y, . Then we define

i’ = zl(wg — U}lwg) + z'g((?wowo + 8w1w1 + 8w2w2) + i3(awlw1 — 8w2w2) S j%

and clearly i € FyDy,. However, we also have i’ € V¥ Dy, since it can again be shown by a direct
computation that the three polynomials wg —wiwa, Eowo +E1w +Eawe, 1w —Esws form a Grobner basis
of the ideal they generate with respect to a partial ordering given by the weight vector (—1,0,0,1,0,0)
(i.e. the weight of wq is —1, the weight of &y is 1 and all other weights are zero). Notice again that this
weight vector yields the filtration induced from V* Dy, on Clw, £]. The corresponding general result (for
the case of the extended matrix with one added column) is found in Corollary 2. below.
Summarizing, we obtain that the operator Q — ¢’ satisfies

LQ-i1=[Q=m.

10



2. Q—1i e VFDy
3. Q — i € Fj_1Dw (this follows from o(Q) = o (i) = o(¥')).

Hence we see by descending induction on [ that we can construct an operator Q' € F; Dy N V* Dy, such
that [Q'] = m. This shows the statement. O

We have finished the proof of Proposition above, which roughly summarizes the content of section [4]
in the main body of the paper for our particular example. We now turn to the statements corresponding
to section [5| below (for our example), that is, we are going to complete the proof of Theorem [2.1

Recall that the GKZ system M% can be described as a Fourier-Laplace transform of a torus embedding

Since the matrix A is homogeneous (i.c. (1,...,1) is in its row span) the D-module M% has a different
presentation involving only (proper) direct image functors and inverse image functors but excluding
the use of the Fourier-Laplace transformation (see [Reild, Proposition 2.7(iii)]). Let us recall some
ingredients of this construction in the present situation. Consider the torus embedding

g:C* — P?
tes (1:t:th),

then /\/1% can be described by a Radon type transform of the D-module g4 O¢+. More precisely, we have
a commutative diagram
U
g ‘ Y
ju

P22 @32 o3
where U is the complement of the universal hyperplane in P? x C3, i.e. U := {\wq + Ajw; + Aaws # 0}.
The GKZ-system M% is now given by

MY~ R2(g4Oc-) = nfimy g Oce ~ a4 (WI!HOT ® J'U’TOU>

where the last isomorphism follows from the projection formula.

Since O¢~ carries a trivial Hodge module structure and since the category of algebraic mixed Hodge
modules is stable under the (proper) direct image functor and the (exceptional) inverse image functor
this induces a mixed Hodge module structure on ./\/l%.

For technical reasons that mainly occur when dealing with the case 5 # 0 as we do in the main body of
this paper, we will pursue a slightly different approach.

Consider the map F : C* x €3 — C given by the Laurent polynomial Ao + At + Aot~ ! and let j : C* — C
the canonical embedding. Denote by p resp. ¢ the projection from C* x C? to the second resp. first
factor. We consider the integral transform of Og- from C* to C? with kernel F' j+O¢- and prove in
Proposition that this integral transfrom is isomorphic to the GKZ-system M% (In the more general

case of a non-zero ,g = (Bo, B) we would start with Og* and use the kernel FTjTOg‘i).
Since this integral transformation preserves the category of mixed Hodge modules we define a Hodge
module structure on the GKZ system by

IM = HO(pu(q"PCe- ® F*jiPCe-)) ®)

In proposition [5.5| we prove that this approach coincides with the Radon transform for integer .

In order to compute the Hodge filtration on explicitly we have to consider a partial compactification
of C* x €3, since the projection p : C* x C? is not proper. For this we use the locally closed embedding
g : C* = P2. As an intermediate step we compute the Hodge filtration on the mixed Hodge module

HA\ = (g x id)*(q*pC@* ® F*jPCe~)

11



The space P2 x €3 is covered by the three charts W, = {w, # 0} for u = 0,1,2. The map g factors over
each chart and is given by

g():@*—>W() glzC*—>W1 gz:C*—>W2
tes (t,th) tes () t (L, %)

We obtain in Formula below that the restriction of “ A/ to W,, can be written as a direct product
AN, = HO(PguCE) RH? (projiP CE,)

where pr, : € — C is the projection to the (u + 1)-th factor. The Hodge filtration on the first factor
can be computed by using Theorem the computation of the second factor is straightforward (cf.

Remark [4.18)) (we check the assumption of Theorem in Lemma [5.8)).

Define the matrices
s (0 0 11 1 s _ ({0 0 11 1 s (00
g = (1 -1 01 1) Ay = (1 -2 01 1) Az = (1 2

We show in Lemma that the D-module underlying # A, is isomorphic to a partial Laplace trans-
formation of M. in the w-variables. More precisely we have

(V) (V) (V)
No =Dezxes/ T ags N1 = Dezxes/ T as, No = Dezyes/ T ag

V)
where 7 4 is generated by Euler operators

(V) (V)
Eg = /\Oa,\O + )\18)\1 + )\26,\2, E? = —’wloawlo + w208w20 + /\18,\1 — )\28)\2

and the box operators
) ) ) )
0 (1,1,0,0,0) = wiowzo — 1,  O0,0,2,-1,-1) := Ix, — 9,0, O (0,1,—1,1,0) = w200x, — Ox,

v
The ideal T 4: is generated by Euler operators

(V) (V)
Eé = /\08>\0 + )\18)\1 + /\28,\27 Ell = wmawm + 2w218w21 + )\16,\1 — /\28>\2

and box operators
) ) ) ) W)
0O (2,-1,0,0,0 = woy — w21, 0,0,2,-1,-1) = 95, — Ox,0x,, O (1,0,—1,1,0) = Wo10x, — Ox,

v
The ideal T 43 is generated by Euler operators

(V) V)
Eg = /\08>\0 =+ )\18)\1 + /\23,\2, E% = —wogawm — 2w128w21 =+ )\16)\1 — )\28,\2.

and box operators

(V) (V) V)
2 a2 —
0O (2,-1,0,0,0 = W2 — w12, U (0,0,2,-1,-1) = 95, — Ox,0x,, O (1,0,1,—-1,0) = w0205, — Oz,

)
The Hodge filtration on these systems is given by F£1Nu = F;’"dDWuX@s/ T as-

Using the fact that N, is a partial Fourier-Laplace transform of M As we use the results of section to
construct a strict resolution of (N, F/T) at the level of global sections which is given by the Euler-Koszul
complex

v) (V) ( (E\Q é\ﬁ)t (V) (é‘\/u) é'\g-b)) (V)
o ._ Ty Fo 2 \Fos 1
K% = Dw,xc3/Jas ————— (Dw,xcs/Jas)* ————= Dy, xc3/Jas

12



where the left ideal Jas is generated by the "box-type” generators from above.
It remains to compute the projection of (A, F/1) under the map P? x C? — C3. In order to do this we

%
lift the filtered D-modules (N, FH) as well as their strictly filtered resolution ( K ¢, F,) to the category
of Ry, x¢s-modules where #,, x €3 := C, x W,, x C* and

Ry, w3 = Clz, (Wiw)iztus Aoy A1 A2]((20w,,, )iztus 20xg> 207, 5 202, )

This is done by the Rees construction, i.e. we associate to the filtered Dy, xgcz-modules (N, FH) resp.
)
(K, F,) the Ry, «@s-modules
)
Ny = RpN, =@ F,N.2", K} :=RrK,
PEZ

and similarly for the filtered Dp2ygs-module (N, F) to which we associate A := O gy gs @
RpaN, where & x €2 := C, x P? x C3.

Instead of computing the projection of the filtered D-module (N, F) we compute the projection of the
Z-module 4. This is given by

b2 x 3 (2]

Moy N ~ Raw DR g g3 53 (N),

where this time 75 denotes the map & x €2 — €°.
Since this is hard to compute directly we construct a resolution #™® from the local resolutions K¢, and
get the double complex Qg}i%%%s R H:

0 1 0 11d>? 2 0
A Qopgsygs @ H " ———————> W5 0)gs @K

1d%° Idl,oT Idz,oT
—1

db—1 42
— IrI — II —
A 1—>Q}@X%3/%3 ® 1 Q@X%S/%@f 1

7d®1 Idl,—lT
—2

dt
H 2 ”—>919x<53/s€3 ® A

1,0
11d

This double complex gives rise to two spectral sequences: The first one is given by first taking cohomology
in the vertical direction. This gives the ;F;-page where only the IE? “I_terms are non-zero and are
isomorphic to Qgi w3153 © N. If we consider the second spectral sequence and take cohomology in the

horizontal direction we get the ;;E;-page. Here ;fEY? = 0 for ¢ # 0 and we set £® :=/; E’f’o. Since
both spectral sequences degenerate at the second page we get a quasi-isomorphism Q;’f% s QN ~ L*

(cf. Propsoition [5.20)).

In order to get an explicit representation of £* we introduce a sheaf of rings .% on & x € and an ideal
J C .7 which are locally given by

D(#y x €3,.7) = Sy, wes = Clz, Aoy A1, A2, (Win)izw] (20005 20015 2025 )

resp.

T(Wux €%, F) = Ja;

where Jy4s is the left ideal in Sy, x4 generated by the corresponding box operators.
Define the following Euler operators

Eo = )\02’8)\0 + )\128)\1 + )\228)\2, El = )\128)\1 . )\226>\2
we get the following quasi-isomorphism

L~ Kos*(z7 .S/ 7, (Ex)r=01)
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hence we get ma A ~ R, (Kos‘(z*IY//, (Ek)kzoyl)).

Since €2 = C, x €3 is affine it is enough to compute the global sections of 75, .4  which are given by
RT (Kos'(zfly//, (Ek)kzo,l)) :
We will show that each term in the Koszul complex is T'-acyclic which boils down to the fact that .7’/ _#

is I'-acyclic.
Define the matrix

and the ring
S:= C[Z7 Wo, W1, W2, )\07 Alv AQ] <Z6>\07 Zax\la 28A2>

Let Jas be the left ideal in S generated by

2 2
wy — wiws, 0%y — Ox,0x,, w10x, — Wo0x,, w0y, — woly,

(these are box operators with respect to the matrix A®). The associated sheaf S/J4s is isomorphic to
| # . The associated graded module is defined by

D7) 7)) =PL(@ =6 (7] 7))

a€Z

The difference between S/.J4- and the associated graded module is measured by local cohomology mod-
ules of S/.J 4=, more precisely we have (cf. Proposition [5.22)

0 —H{,(S/Jas) — S/ Jas — Tu(F] F) — H|,(S/Jas) — 0

and

P H (P x 6% (7] F)) = HE(S/Ta) (6)

a€Z

where (w) is the ideal in C[z, wp, w1, w2, A, A1, A2] generated wg, w1, ws. Notice that all terms involved
carry a natural Z-grading by setting deg(w;) = 1 and deg()\;) = deg(9y,) = 0 for ¢ = 0,1,2. The
generators of J4s lie in the commutative subring T := Clwg, w1, wa, Ox,, Or,, Ox,] C S. We denote by
K 45 the corresponding ideal in T It is easily seen that the ring T'/K 4s is isomorphic to the semi-group
ring C[INA®].

We prove that the local cohomology modules turning up in Formula @ above can be rewritten as follows

(cf. Lemma [5.24):
H{,\y(S/Jas) =~ S @7 Hf (C[INA®))

where the ideal I C C[INA®] is generated by wg, w1, wy. Hence, we have reduced the problem to a well-
known subject in commutative algebra, since the local cohomology groups HF(C[INA®]) can be explicitly
computed by the so-called Ishida complex. Let o be th face which is generated by the first three columns
of A® (the columns which correspond to variables wg, w1, w2). For a face 7 C o we define the localization
C[NA®], := C[INA® + Z(A®* N 7)]. Put

= @ o,
T7Co
dim 7=k

The Ishida complex therefore takes the form

L2:0— L0 — L) —IL2—0
We prove in Proposition that H¥(C[INA®]) ~ H*(L%). Finally we show in Corollary that
HF(L2) = 0 for k # 2 (so we have local cohomology only in the top degree) and that the Z-degrees in

14



H?(L2) are purely negative. We refer the reader to Example for more details in this particular case.

We can therefore conclude that
S/Jas =T () F) and  HY (P x€,7) 7)) =0 forali>1

Putting things together we conclude that the global sections of o, N are given by I'(Kos®*(2~*.%/_#, (E})k=0.1))-
The latter one can be easily computed and gives

TH o N = z_lR%s/I% and THimg, N =0 fori>1

where Rys := Clz, Ao, A1, A2](20,, 20, , 20»,) and the left ideal [1)4: is generated by the box operator
(20x,)? — (205, )(20y,) and the Euler operators Eo, ;. But this shows that

(MG, FJT) = (MG, F2T)

which is the statement of Theorem [2.1] resp. that of Theorem [5.35] below in the general case.

3 GKZ-systems and the Fourier-Laplace transformation
We start by introducing GKZ-systems as well as their Fourier-Laplace transformed versions. Throughout

the whole paper, we let W be a finite-dimensional vector space over C and denote by V its dual vector
space. We will fix coordinates w1, ...,w, on W and dual coordinates Ay,..., A\, on V.

3.1 GKZ-systems and strict resolutions

Given a d x n integer matrix A = (ag;) we denote by a4, ...,a,, its columns. We define
n
NA := Z Na,
i=1

and similarly for ZA and R>oA. Throughout the paper we assume that the matrix A satisfies
ZA=17".

Definition 3.1. Let A = (ax;) be a d x n integer matriz with ZA = Z¢ and 3 = (B, ..., Bqs) € CL.
Write L4 for the Z-module of integer relations among the columns of A and write Dy for the sheaf of
rings of differential operators on V. Define

M5 =Dy /La,

where L4 is the sheaf of left ideals generated by
o= Lot - T 4%

i:1; <0 2:1; >0

foralll € Ly and
Ey — By = Zaki)\i&\i — Bk
i=1

fori=1,...,d.

Since GKZ-systems are defined on the affine space V = C", we will often work with the D-modules of
global sections M ﬁ =T(c", Mi) rather than with the sheaves themselves.

We will now discuss filtrations on GKZ-systems given by a weight vector (u,v) € Z2". This weight vector

induces an increasing filtration on Dy given by

F]Su,v)DV —_ Z c,ﬂg)\wai | v,8 € Zgo

2 uivitvidi<p
finite
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where we set A7 := [/, A} etc. . For an element P = Y c,5A78% we define ord, ) (P) := max{}", u;vi+
v;0; | c¢y5 7# 0}. The associated graded ring Gr{*?) Dy is given by @D, F;Su’U)DV/F;i’f)DV.

In order to construct a strictly filtered resolution of Mi, we use the theory of Euler-Koszul complexes as
introduced in [MMWO05]. We will work at the level of global sections. We briefly recall the definition of
the Euler-Koszul complex (K*, E— ) from [MMWO05|, Definition 4.2] (where it is called ICo (E — 3; C[INA])
and placed in positive homological degrees). Its terms are given by

K'= & (Dv/Jaei..i,
0<iy <...<i; <l
where the left ideal J4 C C[9] := C[0y,, .- .,0x,] is generated by
Op= [ o5 = J] 0%, Viela
i:1; <0 i:1; >0
A simple computation using the fact that Y., l;ar; = 0 shows that the maps
Dv/DvJA — Dv/DvJA
Pw— P-(Ey— Br) for k=1,...,d (M)

are well defined. Moreover, we have [Ey, — Bk,, Ex, — Bk,] = 0 for k1, ks € {1,...,d}, and hence we can
build the Koszul complex

d72 — d71
(K E—-B)=(... — K ' —= K" —0) := Kos(Dy /Dy Ja, (Ex — Br)1=o....d) -

with Dy -linear differential

MN

d_i(es,..i,) =Y _(=D)'""NEi, = Bi)es, i a

k

Il
-

If we assume that the semigroup INA satisfies
NA =Z4NRxpA

then by a classical result due to Hochster ([Hoc72l theorem 1)) it follows that the semigroup ring C[INA]
is Cohen-Macaulay. It was shown in [MMWO05, Remark 6.4] that in this case (K*, E — /) is a resolution
of Mf1 for all g € C.

Notice that the filtration F{*" on Dy induces a filtration on Dy /Dy Ja which we denote by the same
symbol. We define the following filtration on each term of the Koszul complex (K*, E — (3):

(u,0) fr=1 . (u,0) o
Fpuv K="= @ FP*E%:1 . (DV/DVJA)ezl...zil 5
0<is<...<iy<l

where ¢; = ord(, ) (£; — B;). This shows that the complex ((K°®, £ — 3), F.(“’U)) is filtered, i.e. that the
differential d respects the filtration

d_(F K™ ¢ FS) d_ (K™ == im(d_;) N ) K
We recall the following well-known criterion for a complex to be strictly filtered, which means
dy(F"V K™Y = Fd_ (K™Y = im(d_y) N F{"" K~

Lemma 3.2. Let

0 — (My, F) 2 . D2 (M, F) — 0

be a sequence of filtered D-modules with bounded below filtration. The following properties are equivalent.
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1. The map dy, is strict.
2. H*(F,M,) ~ F,H*(M.,) for all p.
3. Hk(grgM.) ~ Grff H*(M,) for all p.

Remark 3.3. Suppose that we have NA = Z N R>oA, then in order to prove that the filtered com-
plex (K*,E — B),F.(u’v)) is strict it is enough to show that H'(Gr{*") K*) = 0 for | > 1 and
HO(Gr{"") K*) = Gr{») pr since we already know that H='(K®) =0 for 1 > 1 and H°(K*®) = Mﬁ.

3.2 Fourier-Laplace transformed GKZ-systems

Let as before W be a n-dimensional vector space over C and denote by V its dual vector space. Let X
be a smooth algebraic variety and £ = X x W be a trivial vector bundle and E’' := X x V its dual. We
write (,) : W x V — C for the canonical pairing which extends to a function (,) : E x E' — C.

Definition 3.4. Define £ := Opyx  gre” ) which is by definition the free rank one module with differen-
tial given by the product rule. Denote byp1 : Exx E' — E, ps : Exx E — E' the canonical projections.
For M € DZ(DE) the Fourier-Laplace transformation is then defined by

FLx (M) = pos (57 M & £)[~n]

Definition 3.5. Let A = (ax;) be a d x n integer matriz. Let B € C%. Write L4 for the Z-module of
relations among the columns of A and write Dy, for the sheaf of rings of algebraic differential operators
on W. Define

M5 =Dy / (O Ymelas (B + Br)k=1,....d) »

where

n

Ey = Zakiawiwi for k=1,....d

=1
Omel, = H w;t — H w; M. (8)

m; >0 m; <0

Again we will often work with the Dy -module of global sections
M5 =1(W, M)
of the Dyy-module Mi. Sometimes we will be interested in the case 8 = 0 and will write

My ::M% and My ::I‘(W/,MA).

Remark 3.6. Notice that ./\/l is just a Fourier-Laplace transformation (in all variables) of the GKZ-
system Mi (cf. Definition .

The semigroup ring associated with the matrix A is

CINA] = Cwl/ ((Om)meLa) »

where Clw] is the commutative ring Clwy,...,w,] and the isomorphism follows from [MS05, Theorem
7.3]. The rings C[w] and C[INA] are naturally Z’-graded if we define deg(w;) = a; for j = 1,...,n. This

is compatible with the Z?-grading of the Weyl algebra Dy given by deg(8,,) = —a; and deg(w;) = a;.

Definition 3.7 ([MMWO05, Definition 5.2]). Let N be a finitely generated Z?-graded Clw]-module. An
element a € Z% is called a true degree of N if N, is non-zero. A vector a € C% is called a quasi-degree
of N, written o € qdeg(N), if « lies in the complex Zariski closure qdeg(N) of the true degrees of N via
the natural embedding Z¢ — C?.

Schulze and Walther now define the following set of parameters:
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Definition 3.8 ([SW09]). The set
sRes(A) := U sRes;(A),
j=1

where
sRes;(A) :={B €C?| B € —(IN+1)a; + qdeg(C[INA]/(w;))}

is called the set of strongly resonant parameters of A.

The matrix A is called pointed if 0 is the only unit in INA. The matrix A gives rise to a map from a
torus T' = (C*)¢ with coordinates (t1,...,%4) into the affine space W = C" with coordinates wy, . .., wy:

ha: T —W
(tlv"'vtd) = @Qla-“,tgn)a

where t% = szl ty*". Notice that the map h, is affine and a locally closed embedding, hence the
direct image functor for Dp-modules (h4)4 is exact.

For a pointed matrix A Schulze and Walther computed the direct image of the twisted structure sheaf
ng = DT/DT . (3t1t1 + 51, . atdtd + Bd)
under the morphism h 4.

Theorem 3.9 ([SW09] Theorem 3.6, Corollary 3.7). Let A a pointed (d X n) integer matriz satisfying
Z.A = 7%, then the following statements are equivalent

1. B ¢ sRes(A).
2. M5 ~ (ha), OF.
3. Left multiplication with w; is invertible on Mg fori=1,...,n.

Notice that Schulze and Walther [SW09] use the GKZ-system Mi and the convention deg(dy;) = a;.
We will use Mﬁ and deg(w;) = a; instead.

The aim of section is to generalize the implication 1. = 2. to the case of a non-pointed matrix A. For
this we set g, := 0. We will associate to the matrix A the homogenized (d + 1 x n + 1) matrix A with
columns @, := (1,a;) for i = 0,...,n. Notice that ZA = Z9*+! holds and that the matrix A is pointed in
any case. Consider now the augmented map
h;f : T — W
(t(), e ,td) — (toiﬂo, toégl, . ,toég”) s (9)
where T = (C*)4*! and W = C"*+! with coordinates wo, ..., Wy. Let WO be the subvariety of W given

by wg # 0 and denote by kg : WO — W the canonical embedding. The map h; factors through WO
which gives rise to a map hg with h; = ko o hg. We get the following commutative diagram

hz

T%WOLW

bk o

T w

where 7 is the projection which forgets the first coordinate and g is given by

W0:W0—>W

(wo, w1, ..., wy) = (w1 /wg, ..., wy/wo) .
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Lemma 3.10. For each By € Z we have an isomorphism:
HO (hasOF) = MO (moskif (hg, OL7)) .
Proof. We show the claim by using the following isomorphisms
HOhay OF = Hha HOm  OL o HOh gy 7, OS2 1Om g OF
~ HOmo s kif Koy hor O = Womy ki hz, 0L

The first isomorphism follows from the fact that 7 is a projection with fiber C*, the second isomorphism
follows from the exactness of (ha) and the fourth from the fact that kg (ko) ~ idyy, -
O

The following proposition is the generalization of Theorem to the non-pointed case.
Proposition 3.11. Let A = (ay;) be a d x n integer matriz satisfying ZA = 7 and let 3 € C¢ with
B ¢ sRes(A), then H° ((hA)+O?> is isomorphic to ./\;lﬁ

Proof. The proof relies on Lemma and the theorem of Schulze and Walther in the pointed case.
Notice that we can find a Sy € Z with Sy > 0 such that (5y, 8) ¢ sRes(A) by [Reild, Lemma 1.16] (in
loc. cit. the statement is formulated for 8 € Q% but the proof carries over almost word for word in this
more general case).

Consider the following isomorphism on WO:
f W() — (Dwg
(wo, ... wy) — ((wo,wl/wo, ooy Wy wo)

together with the canonical projection p : W x C7, — W which forgets the first coordinate. This factors
mo = po f, which gives (using Lemma above)

1O ((10):0F) 21 (s (04 08°7) Y =00 (s (7). 007) )
~H° (p+f+( 50’5))\‘7;70) :

The D-module HO f (M(Bo’ﬁ)) i, is isomorphic to Dy xc;, /IO where 7} is generated by
melLA _ H wml _ H wi—m
i:m; >0, :m; <0,

and

Zy = Owowo + Bo and E, = Z ki Ow, Wi + B

i=1

Hence Hf (M Mo W, is isomorphic to Mﬁ X D@;O/(awowo + Bo) as a D-module. We therefore have

H (pafe M) ) 2 1O (O £ (M) 7 ) = HOps (MER Doy /(Do + o) ) = M

4 Hodge filtration on torus embeddings

The aim of this section is to compute explicitly the Hodge filtration of (hA)+Og as a mixed Hodge
module for certain values of 3 (cf. Theorem [£.17). We will use this result in section [5| where the behavior
of mixed Hodge modules obtained by such torus embeddings under the twisted Radon transformation is
studied.
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4.1 V-filtration

As above let A be a d x n integer matrix s.t. ZA = Z%. In this section we additionally assume that the
matrix A satisfies the following conditions:

NA=Z'NRspA and INA#7z¢ (11)

where R>0A is the cone generated by the columns of A. As already noticed above, the first condition is
equivalent to the fact that the semigroup ring C[INA] is normal (see, e.g., [BHI3| Section 6.1}).
We will again consider the locally closed embedding

hp: T — W
(t1,...tq) — (%, ..., 1%).
Put D:={wy ... -w, =0} C W, W*:= W\D, and consider the decomposition h4 =4 o k4, where
k‘A T — W™

(t1,...tg) — (L%, ..., t%).
and where l4 : W* — W is the canonical open embedding.
Lemma 4.1. The morphism ks : T — W™ is a closed embedding.

Proof. This is clear, as the image of k4 is precisely the vanishing locus of ((,)mer, C T(W*,Ow-). O

The aim of this subsection is to compute parts of the canonical (descending) V-filtration of M~ p A+C’)é%
(or Kashiwara-Malgrange filtration) along the normal crossing divisor D for certain values of 3.

We review very briefly some facts about the V-filtration for differential modules. Let X = Spec (R) be
a smooth affine variety and Y = div(t) be a smooth reduced principal divisor. Denote by I = (¢) the
corresponding ideal. Let as before Dx = I'(X, Dx) be the ring of algebraic differential operators on X,
then the V-filtration on Dx is defined by

VEDx ={P e Dx | P’ c ’™* forany jecZ},
where I/ = R for j < 0. One has
VEDx =t*V°Dy

V*Dx= > 9lV°Dx.
0<j<k

Choose a total ordering < on C such that, for any a, 8 € C, the following conditions hold:
L. a<a+l,
2. a<f ifandonlyif a+1<pg+1,
3. a< B+ m for somem € Z.

We recall the definition of the canonical V-filtration (see, e.g., [Sai93| Section 1}).

Definition 4.2. Let N be a coherent Dx-module. The canonical V -filtration (or Kashiwara-Malgrange
filtration) is an exhaustive filtration on N indexed discretely by C with total order as above and is uniquely
determined by the following conditions

1. (VEDx)(VEN) C VOtEN for all k,a

2. VYN s coherent over V°Dx for any o

3. t(VEN) = VFIN for a>>0

4. the action of Oit — o on Gryy N = VEN/VZ*N is nilpotent
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where V2N =g, VA,

The canonical V -filtration is unique if it exists. Its existence is guaranteed if N is Dx-holonomic.

We reduce the computation of the V-filtration on M g along the possibly singular divisor D to the
computation of a V-filtration along a smooth divisor by considering the following graph embedding:

ig: W — W x Gy
(Wi, ywp) = (Wi ey Why W - e W)
Instead of computing the V-filtration on Mﬁ, we will compute it on T'(W x Cy, H° (ig+/\>li)) along t =0

(notice that i, is an affine embedding hence i, is exact). In order to compute the direct image we
consider the composed map

igoha: T — W xCy
(b, sta) o (890, e g0t (12)

Notice that the matrix A’, which is built from the columns ag,...,a,,a,; + ...+ a,, gives a saturated

r=n>

semigroup INA’ = INA. Hence we can apply again Proposition to compute
M, =~ Ay MB =~ HO(iy o ha), OF.

This means that ’Hoing/\;li is a cyclic Dy x¢,-module Dy ¢, /Z’, where I’ is generated by

E,; = Zakié‘wiwi +cpOit + B for k=1,...,d, (13)

i=1

where ¢; = ag1 + ... + agp is the k -th component of ¢ € Z¢ and

MG LMy _ —m;
Opmer ., = [L 0w tm = [l cow; ™ formui =0 (14)
mel - m; —my g —
[Ln,s0wi™ =L, <cow; ™t for myiq <0

where IL 4/ is the Z-module of relations among the columns of A’.

We are going to use the following characterization of the canonical V-filtration along ¢t = 0.

Proposition 4.3. [MM0J, Definition 4.3-3, Proposition 4.3-9] Let n € N and set E := Oit. The
Bernstein-Sato polynomial of n is the unitary polynomial of smallest degree, satisfying

b(E)n € VH(Dx)n.

We denote it by b, (x) € Clx] and denote the set of roots of b, (x) by ord(n). The canonical V -filtration
on N is then given by
VAN ={n € N |ord(n) C [a,0)}.

We will use this characterization to compute the canonical V-filtration on M ﬁ, along t = 0 for certain

B e R4

Let ¢ :=aq + ...+ a,. For all facets F of R>0A’ = R>¢A let 0 £ np € 7% be the uniquely determined
primitive, inward-pointing, normal vector of F, i.e. np satisfies (np, F) = 0, (np,INA) C Z>o and
A-np & 74 for A € [0,1) (where (-,-) is the Euclidean pairing). Set

ep = <@F,Q> S ZZO'

We show that er is always positive. We have ¢ # 0 since otherwise 0 = —a; — ... —a,, € INA and
therefore —a; € INA for all i € {1,...,n} which contradicts the assumption INA # Z?. Furthermore ¢
lies in the interior of R>¢A’. In order to see this assume to the contrary that ¢ lies on some facet F' of
R>oA’. Then (np,c) = 0 holds. For a; ¢ F we have on the one hand ¢—a; € INA and on the other hand
(¢ — a;,np) < 0 which is a contradiction. Hence ¢ is in the interior of R>¢A, which shows ep € Zg.
We define the following set of admissible parameters (:

Aiim () {RF-[0o) ) (15)

F:F facet
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Lemma 4.4. Suppgse as above that NA = 7 N R>¢A. Consider the cyclic Dy xc¢,-module Mﬁ,, and
its generator [1] € Mar. Then we have ord([1]) C [0,1) if B € A 4.

Proof. Tt was shown in [RSW18, Theorem 3.5] that the roots of byyj(x) for [1] € Mﬁ are contained in the
set {e € C|e-c € qdeg(C[INA']/(t)) — 8} which is discrete since ¢ lies in the interior of R>¢A’ = R>oA
and qdeg(C[INA']/(t)) is a finite union of parallel translates of the complex span of faces of R>¢A’ (cf.
IMMWO05]). We will now compute an estimate of the quasi-degrees qdeg(C[INA’]/(t)). For this we re-
mark that 0 = [P] € C[INA']/(t) for P € C[INA'] iff 3P’ € C[INA'] with P = P’ -t. In this case we have
deg(P) e NA+c.

Set Lp :={X . c+C-F|k=0,...ep —1}. Then L = Jp 4,00, Lr is Zariski closed and we will show
that the set deg(@[]NA’]/( ) is contained in L. Let P € C[INA'] with 0 # [P] € C[INA’]/(¢) and set
p = deg(P) € NA. Since —¢ ¢ R>(A there exist a facet F' and some A € [0,1) such that p— A¢c € F, i.e.
p=Ac+ f for some f € F. We have \-ep = (\c+ f,np) = (p,np) € Z>o. Hence p € Lp C L.

Since qdeg(C[INA']/(t)) is by definition the Zariski closure of deg(C[INA']/(¢)) the former set is contained
in L. In particular this shows that the roots of byyj(x) are contained in the set {e € C | e-c € L — j3}.

Since L is a union of hypersurfaces which are defined over IR c e Z% and B € R, this set is equal to
{e€R|e-ce L—pB}. Hence for B € Nppuoee{R-F — [0, 2 -5) - ¢} we can guarantee that the roots of
bjy)(z) are contained in [0, 1). O

We will prove a basic lemma on the set 24 which will be of importance later.
Lemma 4.5. Suppose NA = Z% N R>q. Then A4 N sRes(A) = 0.

Proof. Recall that sRes(A) = UJ 1 SRes;(A) = U;L:1 —(IN + 1)a; + qdeg(C[INA]/((w;)). Therefore it is
enough to show that
A4 N { (N + 1)a; + qdeg(C[NA/(w;))} =0 (16)

holds. The following estimate of the quasi-degrees of C[INA]/(w,)) can be shown similarly as in the proof
of the lemma above

qdeg(C[NA]/((w;)) € L; == | &——a+@lﬂkf0 er; — 1}
F:gng CF
where ep; := (np,a;). Hence it is enough to show that for each j € {1,...,n} and each facet I with

a; ¢ F the following holds

{R~F—[0,1)~C}ﬂ{—(]N+l)aj+ FU k~aj+IR~F}:(Z) (17)

& EF j
F k=0

Since F' has codimension one in le and a;,¢c € R+ F we can write ¢ = A\a; + f for some f € R-F. We
get er = Aep ;. We conclude that ( is equlvalent to

{R~F—[O,1_)-aj} m{ (N + 1)a; +6F01i a; +R- F}_V)

€F,j Fj

But this holds since (—=2,0] N {—(IN+1) + {0

epj—1 _
iy =, =

,EF

Example 4.6. The sets sRes(A) and A4 for the matriz
-1 0 1 2
A= < 111 1)
are sketched below.
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—

— sRes(A) R>oA [ 2y,

We give another estimate of the set A 4:

Lemma 4.7. Suppose NA = Z? N R>oA. Let b € Z¢Nint(R>0A), then A4 C —b+ int(R>pA).

Proof. Let F be a face of R>9A. Since F' has codimension and b,c ¢ RF we can write ¢ = Ab+ f for
some f € R-F. If we set epp := (np,b) € Zso we get ep = Aepy. hence

(R-F—[0, i)g)} — (R-F[0, %)-g} € {R-F—[0, )b} C {R-F—b+(0,00)b} C —b-+{R-F+(0,00)nz}

hence 1
A=(|R-F—[0,—) ¢)} C—b+int(RxA)
F er -

O

Next we draw a consequence for the canonical V-filtration with respect to t = 0 on Hoing/\;li. We will
not compute all of its filtration steps, but those corresponding to integer indices, which is sufficient for
our purpose. For this consider the induced V-filtration on ME, = (W x Cy, Hoig+./\/li)

Vi’meﬁf = {[P] € M}, | P € V*Dwyc,}-

It is readily checked that Vi’deM 5/ is a good V-filtration on M g,. As M is holonomic, hence specializ-
able along any smooth hypersurface, it admits a Bernstein polynomial by, ,(z) in the sense of [MMO04,
Définition 4.2-3]. On the other hand, for any section o : C/Z — C of the canonical projection C — C/Z,
there is a unique good (Z-indexed) V-filtration V;Mﬁ, on Mﬁ, such that the roots of by () lie in Im(o)
(see loc.cit., Proposition 4.2-6). From this we deduce the following result, which describes the integral

part of the canonical V-filtration on M ﬁ,.

Proposition 4.8. If NA = Z4NR>0A and B € Aa, then for any k € Z, we have the following equality
VkMﬁ, = ViIdeMB/ :

Proof. Recall (see [MMO04l Proposition 4.3-5]) that we have V“*ka‘, = nga Mﬁ, for any a € C, k € Z,

where o, : C/Z — C is the section of C — C/Z with image equal to [o, + 1). Hence, in order to

prove the proposition it is enough to show that VfoMﬁ, = VZ-’deMi,. Using loc. cit., Proposition 4.2-6 it

remains to show that the roots of the Bernstein polynomial by, ,(z) are contained in [0,1).

An element [P] of V;’deMg, for k > 0 can be written as

l
[P] = [>_ t" ()" P] + [R],

=0

where [R] € VFFINE, and P € Clwy, ..., wn](Bu,y, - - -, O, ). We have
!
by (Ot — k) - [P] = [Z t*(0¢t)" Ps - bpay(94t)] + by (94t — k) - [R]
i=0
l .
= Ztk(att)lpi “b)(Ot) - [1] + by (Ont — k) - [R] .

=0
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But Y t5(9,t)" Pi-bpy) (95t)-[1] € VEELME, because Sh_ t5(9,t)' P € VFD and by (9:t)-[1] € VL, M5,
Therefore 5
by (Dst — k) - [P] € VELIAE,.

ind

Now let [P] € VﬁkMﬁ, with k& > 0. It can be written as

ind
l
(P =3 0k @it)' P + [R],

where [R] € VEEIM A.. By a similar argument we have

by (9st + k) - [P] € Vi B4 1aTE,

ind

This shows by, ,(z) | bjyj(z). Because of Lemma the roots of by, ,(x) are contained in [0,1), the
claim follows.
O

4.2 Compatibility of filtrations

In this subsection we are going to show a compatibility result between two filtrations on the Dy -module
Mg, (recall that the d x (n + 1)-matrix A’ has columns a,,...,a,,a; + ...+ a,). Let, as before, F°"?

yYUny
be the filtration induced on M 5/ by the filtration F, Dy by orders of differential operators. Moreover,
let V* Dy be the V-filtration on Dy with respect to the coordinate w, 11, and denote as before by
Ve oM ﬁ, the induced filtration on M ﬁ,. Then the main result of this subsection can be stated as follows.

Proposition 4.9. Let A be a d x n-integer matriz and suppose that NA = Z4 N R>oA, NA # Z4. Let
A = (ay,...,0,,01 + ... +a,) and consider the left Dy -module

MY, = D/ (Om)mer.,, + (B + Bi)iet,...a) -

Then the map i §
V*Dw: 0 E,Dyyr — VE M8, 0 EonTy,

1S surjective.

The proof of this result will occupy this entire section. Before going into it, let us comment on how
this result will enter in the calculation of the Hodge filtration on M fl,. As will be explained in more

detail at the beginning of section we consider the mixed Hodge module h A*pCé{’H with underlying
Dyy-module hAJrO?. If A and S satisfy the assumptions of Proposition then this Dy -module is
Mﬁ. In order to compute the Hodge filtration on its module of global sections M ﬁ, we will first consider

the module Mg, =Tw, hﬁ,+(’)g) and compute the Hodge filtration on it. We will use the fact that
the embedding ha: : T < W' can be factored as

T — s WxC —Ls W =W xC,,

where the first morphism is a closed embedding, and the second one is the canonical open embedding of
W x C; into W’. Then the main tool to compute the Hodge filtration on Mﬁ, is the following formula
of Saito (see formula below). Let (M, F) be any filtered Dy x¢;-module underlying a complex
mixed Hodge module in MHM(W x C7,C). Then the direct image j; M underlies a complex mixed
Hodge module on W/, and its Hodge filtration is given as

FljeM =30 (VO M ju(FM)),

i>0

where V*j,. M denotes the canonical V-filtration on j; M with respect to the divisor {¢ = 0}. We are
going to apply this formula for the case where M is the direct image of O? under the map T' — W x Cj
(so that jL M = Mﬁ,). Since this map is a closed immersion, we can explicitly calculate the Hodge
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filtration on this direct image, i.e., it is given as the shifted order filtration for a cyclic presentation.
Moreover, if § satisfies the assumptions of Proposition E, then we have VFM g, = Vk M ﬁ, for all

ind
k € Z (in particular, for k¥ = 0), so that we have to compute the intersection of the order filtration on
M ﬁ/ with the induced V-filtration on that module. As we will see below in section this is possible
since these two filtrations satisfy the compatibility statement of the above proposition. Its proof relies on
the very specific structure of the hypergeometric ideal 14 = ((Em)memm + (Ek + 5;6)1@:1),“’(1) C Dy
and uses non-commutative Grobner basis techniques, a good reference for results needed is [SST00]. We
will recall the main definitions for the reader’s convenience.

To simplify the notation, we rename the coordinate ¢ on W’ to be wyy1, that is T(W',Ow/) =
Clwi, ..., Wy, wn41]. We work in the Weyl algebra Dy = Clwy, ..., wp41](Ow,, - -1 0w, ). Any opera-
tor P € Dy has the so-called normally ordered expression P = Z(% 5) cw;uﬂag, € Dy, where the sum

runs over all pairs (v, d) in some finite subset of IN2(*+1),

First we define partial orders on the set of monomials in Dy resp. Clw] := Clwi,...,wy11] resp.
Clw, €] := Clwy, ..., Wnyi1,&1,- -+, Enra] by choosing the weight vectors (u,v) € Z2™ 1) with u; +v; > 0
resp. u € Z"T1. This means that the variables w; have weight u; and the partial differentials 9,,, resp.
& have weight v; . The associated partial order in Dyy: is defined as follows: If for two monomials
w”@ﬁ,,wcaff) we have Y. u;c; + vid; < Y, u;v; + v;0;, then by definition uﬂag) is larger then w9,
we write w¢dd <(,.) w70 and similarly for C[w] and Clw,&]. The weight vector (u,v) induces an
increasing resp. decreasing filtrations on Dy given by

) — g D _ 5
FIE“ ) Dy = Z Crsw Oy, resp. F(u,v)DW/ = Z Cy5w7 Oy,
> wivi+vid; <p > wiYi+vidi >p

We define the graded ring Gr{“*) Dy, := D, F,S“’U)DW//F;E’{))DW/ associated with the weight (u,v).
Notice that for (u,v) = (0,...,0,1...,1) (i.e. the w; have weight 0 and the 0,, have weight 1) the
ascending filtration F.(u’”)DW/ is the order filtration Fy Dy, and for (u,v) = (0,...,0,—1,0,...,0,1) the
descending filtration F’ (.u,v)DW' is the V-filtration with respect to wy, 1.

We get well-defined maps

i) : Dwr — Gr{"") Dy = Clw, ]

d : o 4
P = Zcﬂ,(guﬂaw > Ny (P) 1= Z crswE
v,8 > wivitvidi=m

where m := ordy ) (P) := max{}_, u;v; + vid; | ¢45 # 0} and
iny : Clw] — Gry Clw] = Clw)]
Q= chuﬂ — i1y, (Q) == Z csw’
vy Do uiyi=m
where m = max{)_ u;7y; | ¢y # 0} and
i) : Clw, €] — Gr{"" Clw, €] = Clw, ]

R= Z c wVES —s iN(u,0) (Q) = Z csw’®

7,0 > uivitvidi=m
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where m := ord(y ) (R) := max{)_, u;v; +vid; | cys # 0}. Notice that, in constrast to the case of a total
ordering, the initial terms in, ,) resp. in, are not monomials.

Let I' C Dw be a left ideal. The set iny.,)(I") is an ideal in Gr{®?) Dy and is called initial ideal of I’
with respect to the weight vector (u,v). A finite subset G of Dy is a Grobner basis of I’ with respect
to (u,v) if I’ is generated by G' and in, ) (I") is generated by in(, ,)(G). Similarly, let J" C Clw] resp.
K' C Clw,£] be an ideal. The set in, (J') resp. ing, ) (K’) is an ideal in Gry Clw] resp. Grl®Y) Clw, ¢]
and is called initial ideal of J’ resp. K’ with respect to the weight vector u resp. (u,v). The definition
of a Grobner basis is parallel to the definition above.

is the following ideal in Gr(y ) Dw:

d

finuny(Tar) == Gr(y) Dwr - inu(Jar) + Z Gr(y,0) Dw - 1,0y (Er + Br)
k=1

where J4 C C[w] is the ideal generated by (CJ )meL ,, -

Consider the Koszul complex

I3 KNG (Dyyr /Dy ) 55 KOGl (Dyyr / Dy Jar)) — 0

where
KP(Gr{"“") Dy /Dy Jar) = ) Gr{“")(Dw/DwJar)e, .,
1<in<...<ip<s+1
and
p ~
d—p(ez‘l...ip) = Z(—l)kilm(u,v)(Ek + ﬁk)eil.i.?k...ip
k=1

The following statement is an easy adaption of [SST00, Theorem 4.3.5]
Proposition 4.10. If the cohomologgy H=Y(K*(Gr{*")(Dyw+ /Dw:Ja))) vanishes, then the initial ideal
satisfies ing, ) (1ar) = fing,)(Lar).

Proof. After a Fourier-Laplace transform w; — 0, and 9,,, — —=; the proof carries over word for word
from loc. cit. (Notice that in Chapter 4 of loc. cit. the homogenity of A’ assumed, however the proof of
this statement does not need this requirement). O

Recall thath’ is a matrix built from the matrix A by adding a column which is the sum over all columns
of A. Let Ja C Clwy, ..., w,] be the ideal generated by (I;)cr, - We choose generators g1, ..., ge—1 of
Ja. Notice that g1,...,90-1,9¢ *= Wp41 — W1 - ... Wy is a basis of Ja» C Clwy, ..., wn41]-

Lemma 4.11. The elements gi,...,g¢ form a Grébner basis of Ja with respect to the weight vector
0,...,0,—e) with e > 0.

Proof. We have already seen that ¢1,. .., g is a basis of J4/. It remains to prove that ino,....0,—e)(91) =
G155 10,...0,—)(9e-1) = ge—1,n0,....0,—e)(ge) = w1 - ... - wy is a basis of in(, . 0,—c)(Jar). Let

¢
x = ingi (18)
i=1

and —e - N := max{ord(,..o,—e)(2ig:) | i = 1,...,£}. Assume that ord,.. o—c)(z) < —e- N, then the
maximal w,1-degree component of the equation is given by

-1

0= Zwﬁ&-lpz‘gi + ’wﬁ[ﬂpe (wy e wy)
1=1
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for polynomials p; € Clwy, ..., w,]. Since Jy = (g1,---,9¢—1) is a prime ideal and wy - ... w, & JA we
conclude that p, € J4. Hence there exist polynomial ¢; € Clwy, ..., w,] such that p, = Zf;ll q:gi;- We
get

£ —1 -1 l
_ N N N+1 _ /
=Y migi— > whipigi —w)iipe ge +whi (Z Qigi> => g
i=1 =1 =1 =1

for zj € Clwy, ..., wnq1] with max{ord, o e (2jg:) | i = 1,...,} < —e- N. By induction we can
reduce to the case ord(q,.. o,—¢)(z) = —e-N. In this case we get for the maximal w, 1-degree component

ing,..0,—e)(®) =Y _wipigitwipp(wie . cwp) = wipling, o, —e)(9:)Fwniapring,. o, —e)(92)

for polynomials p; € Clws, ..., w,]. This shows the claim.
O

Proposition 4.12. Let A be a d x n integer matriz such that NA = R>oANZ? and NA # Z?. Let A’
be the matriz built from A by adding a column which is the sum over all columns of A. Then

finguw(Lar) = ingyv) (Lar)
if
1. (u,v) =(0,0,...,0,1,1,...,1)
2. (u,v) =1(0,...,0,—e,1,...,1,14¢€) for0<e< 1.

Proof. The first case was proven in [SST00, Corollary 4.36] for homogeneous A. In order to prove the
statement for (u,v) = (0,0,...,0,1,1,...,1) in the general case we first observe that Gr(v’u)(Dw//jA/)
is isomorphic to

Cl¢1, .-+, éns1] ®c C[INA']

which is Cohen-Macaulay by the assumption NA = R>0A4 N Z? and the fact that NA = INA’ as well as
R>0A = R>pA’. It follows from [BZGMIE, Theorem 1.2] that the elements in(%v)(Ek + Bk) are part
of a system of parameters in C[¢y,...,&,1+1] ®¢ C[INA'] and since this ring is Cohen-Macaulay they also
form a regular sequence. Therefore H'(K*(Gr(y,,)(Dw'/DwsJa))) = 0 and the claim follows from
Proposition {4.10)|

We prove the second claim. Since NA # Z¢ holds the last column of A’, which is the sum of the
columns of A, is non-zero (this was shown above Lemma. Hence we can assume (by elementary row
manipulations of A’, which do not change the ideal I4/) that the last column of A’ is zero except for the
entry in the first row. Set

ek ::Zakiwi&- for k=1,...,d.
i=1

We will use the generators g1, ..., gr—1 of J4 from Lemma It follows from [BZGM15, Theorem 1.2]
that é1,...,¢&q is part of a system of parameters for

C[ﬁl, . a§n] ®C C[NA} ~ C[fl, . ,§n,w1, . ,wn]/([][ﬁl, . ,§n,w1, . ,wn]JA
=~ C[gla"'agnawla"'awn]/(glv"'agffl)

where C[INA] has Krull dimension d. Therefore

C[Elw"a€’n7wla'"7wn]/(gl7'-'7g€71;é17~-~7é7‘>

has Krull dimension n.
We will show that the Krull dimension of

C[&lw'wf’ﬂmwlw"7wn]/(gla"'795717w1 ""'wnaé27---7é’r) (19)
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is also n (notice that we omitted é1). The variety corresponding to C[¢1, .. .,&,] @¢ C[INA] is
C"xXqCC"xC"

where X4 := Spec C[INA]. The toric variety X 4 is a finite disjoint union of torus orbits where the big
dense torus lies in {wy - ... w, # 0} and the smaller dimensional tori lie in {w; - ... w, = 0}. Hence

C[gla"'7£naw17"'7wn]/(gl7-~-ag€—17wl e wn) (20)

has Krull dimension n 4 d — 1. The torus orbits of X4 correspond to the faces of the cone R>¢A where
the big dense torus corresponds to R>oA itself. For a face 7 C R>oA the torus orbit Orb(7) is given by
Orb(r) = X4 N (C},)" where (C*), ={w € C" | w; =0for a; & 7,w; # 0 for a; € 7}. Hence it suffices
to prove that (C™ x Orb(T))NV ((éz, ..., €éq) has dimension n, where V((éq, ..., ¢&q) is the vanishing locus
of the ideal generated by ég,...,¢q. Set Cf = {{ € C" [ § =0 for a; ¢ 7}. It is enough to show that
Ci; x Orb(r)NV((é5,...,¢7)) has dimension at most §{i | a; € 7}, where €] := >, . axw;§;. The
codimension of V((7, ..., €7)) is dim(r) since (1,0,...,0) = (a1 +...4ay) ( for a suitable ¢ € Z\ {0})
lies in the interior of R>A, hence not in 7 and therefore the matrix (ag;)x>2,i:0,e- has rank dim(r).
By [BZGMI5, Lemma 1.1] the intersection of C7 x Orb(r) with V((€3,...,€])) is transverse. Since the
codimension of V((é7,...,¢é7)) is dim Orb(r) = dim(7) the intersection has dimension #{i | a; € 7}. This
shows that the Krull dimension of is n.

Let
n
& =61+ (D a1:)Tnr1&nt1 = ingo,..0,—e,... 1,140 (B + B1)
i=1
é;c = ék = 'I:N(07”.)07_6)1,'..71)1+e)(E]; + ﬂk) for k= 2, N 7d.
and
G; = 110,....0,—e,1,...1,1+¢) (9i) = i for i=1,...,0-1
9o = in(o,...,o,fe,L“‘,1,1+e)(gé) =wypc...cWn
O
Since Gy, ...,g, and é,..., ¢, are independent of wy41,&p41 and €] = & + (D1, a1i)Tntr1&n41 is (for

degree reasons) a non-zerodivisor on

C[wn"rlaf’n"rl] ®C C[fl, 7§n7w17"'awn]/(§1a"'a?@véQa"'véd)a

one easily sees that
C[wl, e awn+17§1a e ,§n+1]/(§1,. .. ,gg,éll,. . ,ézl)

has Krull dimension n + 1. It follows from that Clwy, ..., Wnt1,&1, -3 &nt1]/(Gys - - -, Gp) has Krull
dimension (n + d + 1), hence €&/, ..., &} is part of a system of parameters. By the assumption on A the
ring

Clwy, .. s wat1, &1, &nr1] /(G155 Ge1) = Clwns1, &1 -5 §nr] ©c C[INA]
is Cohen-Macaulay. Since g, = wy - ... - w, is not a zero-divisor in the ring above (because C[INA] has
no non-zero zero-divisors), we see that the ring

C[wlw--awn+17§13"'7§’n+1]/(§1’"'7§2)

is also Cohen-Macaulay and therefore &/, ..., €, is a regular sequence in Clw, ..., wn41,&1, -, &nt1]/(G1, - - -

Since 5
Gr(o,..470,—671,.4.7171-‘(-6)(DW//DW/JAI) = C[wh ceey Wntt, ST a€n+1]/(§17 cee @e)

and &, =N, . 0,—e1,..,1,1+e) (E,’€ + Bk) for k=1,...,d, we have

H_l(K.(Gr((],.H,()A,fe,l,‘..,l,lJre)(DW'/DW’ Jar))) = 0.
Using again Proposition this shows the second claim.

28



Corollary 4.13. Let gy1,...,g; € Clwy, ..., wny1] be the generators of Jar defined above Lemma|4.11]

1. The (gi)i=1,... ¢ together with (E,{c+ﬂk)k:1 4 form a Grébner basis of 14 with respect to the weight

vector (u,v) = (0,...,0,1...,1).

.....

2. Let (u,v) = (0,...,0,1,...,1) and set §; := in(y.)(g9:) and E,c = in(y, U)( + Bx). The elements
(Gi)i=1,...¢ and (E,’c)k:17,__,d form a Grobner-basis of

in(u,v)(iA’) = in(u,v)((glv e 79@7E1 + ﬁh .. aEZi + Bd))
= (glv"wge’Eiv"'?Eé) - C[wh- --awn-f—lvgla-"agn-‘rl]

with respect to the weight vector (0,...,0,—1,0,...,0,1) (i.e. wpy1 has weight —1 and &,4+1 has
weight +1).

Proof. 1.) The set (g;)i=1,....c is a Grobner basis for Jar. Therefore the elements in,(g;) = g; gen-
erate in,(Ja) = Ja. The elements (gi)i=1,..¢ and (B + Br)r= 1,....d generate T4 and the elements
(17,0 (gi))i=1,...,c and (in(uﬂ,)(Evk + 5k))k:1,...,d generate fin(,, ) by deﬁnition. The claim follows now
from Proposition 1..

2.) It follows from the first point that the §; = in(,.)(g:) and the B, = w0y (B}, + Br) generate
in(y, U)(IA/) We have to show that the ing,.. o,—1,0,..0,1)(g:) fori =1,... ,dand the m(o,...,o,—l,o,..i,o,l)(Ek)
generate m(o,...,o,71,o,“.,o,1)(in(u,y)(fA'))- But this follows from (cf. [SSTOO7 Lemma 2.1.6 (2)])

in(O,...,O,fl 0,...,0 1)(91) (0,...,0,—e,1,...,1,14€) ( ) fori=1,...,¢
no,...,0,~1,0,...,0,1) (Ep) = ingo,....0—e.1,. ite) (Er + Br) fork=1,...,d
n(,...,0,—1,0,...,0, )(m(u v)(IA’)) 0,—el,.. ,1,1+e)(iA’)
for 0 < e < 1 and Proposition 2. . O

The second notion we are going to introduce relates the order filtration Fy on Dy, with the V-filtration
that already occurred in the last subsection. Here we consider the descending V-filtration on Dy with
respect to wy,+1 = 0, which we denote again by by V*Dyy,. We have

VODW’ = Z (8wn+1wn+1)i(wn+l)kpi
i,k>0

for P; € Clwy, ..., wp]{Ow,, .-, 0, ) and

V*Dy: =wk, ,V'Dy: and V*Dy, =Y 0], VD (21)
j>0

for k > 0.

Recall the left ideal T4+ C Dy and the left Dy-modules Mﬁ, = DWr/fA/ from above. We define
filtrations V2, and F2"¢ on M f‘/ by:

VFDw: + I - FyDyr + Ly
deMB/ = Wiﬂ and FpO’I“dej/ = Lﬂ )

IA/ iA/
We are now ready to prove the main result of this subsection.

Proof of Proposition[{.9 Let m € Vi’fldM’B, N F;T'dMﬁ,. We can find PZ Q € Dy such that P € F,Dyy,
Q € VEDy/ and [P] = m = [Q], ie. P = Q — i for some i € I4. We have to find a @’ with
Q' € VEDw: N E,Dw: with P = Q' — ' for i/ € I. We will construct this element @’ by decreasing

induction on the order of @ by Kkilling its leading term in each step. For this we will use the special
Grobner basis of 14/ which we constructed in Corollary above.
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Recall that the weight vector (u,v) := (0,...,0,1,...,1) induces the order filtration F&Y = Ford on
Dy If R € Dy and k := ord,,,)(R) we define the symbol of R by ox(R) = in(,.) (R) and set
o4(R) = 0 for ¢ # k. We define a second weight vector (v',v’) := (0,...,0,—1,0,...,0,1) which induces
the descending V-filtration from on Dy. The V-filtration and F-filtration also induce filtrations
‘7 and F on Gr(,“’”) DW/ = GI‘? DW/ = C[wl, N ,wn+1,£1, . >€n+1]~

Let tg := ord(y,) @, ti := ord(y.) 7 and set t := max(tq,t;). Obviously we have t > p. If t = p we are
done. Hence, we assume ¢t > p, thus we have

0= Jt(P) = Ut(Q —’L)
and therefore t = to = t; which implies 04(Q) = 0¢(i) # 0. Set kg := ord(y ) (0:(Q)), then we have
o4(i) = 04(Q) € Ve,

Recall from Corollary that T4 is generated by {G1,...,Gm} == {g1,...,90, B} + B1,..., B, + Ba}
and these elements form a Grébuner basis with respect to weight vector (u,v) and their initial forms

{G’l, ey ém} = {in(u,v) (Gl), e 7in(u,v)(Gm)}

are a Grobner basis of in, ,)(Ia/) with respect to the weight vector (u’,v"). Therefore we can write
m
o¢(1) = Z 111G
I=1

with 7; € Clwy, ..., Wnt1,&15 .-, &nt1). Using a commutative version of [SST00, Theorem 1.2.10] we
can assume that El € Vke—Fk where k; = ord(u/,v/)(él). Since the elements Gl are homogeneous with
respect to the variables &1, ...,&,4+1 we can also assume that fl S Ft,tl Grf Dy where t; = ord(u,v)(él).
Let 4; € Dy be the normally ordered element which we obtain from #; by replacing & with Ow,;- One
sees easily that i;G; € F,Dw N Vke Dyy. Therefore the element i/ := > e, 4Gy has the following two
properties

ai(i') = o:(i) = 04(Q) and i’ € VFe Dy,

where the second property follows from ord, ., (Gi) = ord(u/)v/)(él). We therefore have

P=Q—i —(i—1)
with Q@ — i’ € F,_1Dw N V*e Dy . Since obviously we have k < kg, we conclude that Q — i’ €
F,_1Dw' NV* Dy, . The claim now follows by descending induction on the order ¢. O

4.3 Calculation of the Hodge filtration

In this subsection we want to compute the Hodge filtration on the mixed Hodge module
Ho(ha"C7™),

recall from section [1f that €27 = €2H[d] € MHM(T). Also recall that ?C5* has the underlying
filtered D-module (Og, FH (951)7 where the Hodge filtration is given by

0% forp>0
HmnB _ T p=
F, OT—{O

else.

We will use several different presentations of (95{ as a Dp-module, namely, for each a = (ag)g=1,...4 € YA
we have a Dp-linear isomorphism

T(T,0%) ~ Dp /(0 tk + B + Qr)k=1... d

such that the Hodge filtration is simply the order filtration on the right hand side.
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As we have seen in Lemma the morphism h 4 can be decomposed into the closed embedding k4 :
T — W* = W\D and the canonical open embedding 14 : W* — W. We have to determine the Hodge
filtration on the direct image modules for both mappings. The former is (after some coordinate change)
a rather direct calculation, and will be carried out in Lemma [£.14] below. However, understanding the
behaviour of the Hodge filtration under the direct image of an open embedding of the complement of a
divisor (like the map l4) is more subtle and at the heart of the theory of mixed Hodge modules (see,
e.g., [Sai90, Section (2.b)]). More precisely, since the steps of the Hodge filtration of a mixed Hodge
module are coherent modules over the structure sheaf of the underlying variety, the usual direct image
functors are not suitable for the case of an open embedding as they do not preserve coherence. In order
to circumvent this difficulty, one uses the canonical V-filtration along the boundary divisor, as computed
in subsection [f.I] above. Let us give an overview of the strategy to be used below. The actual calculation
will be finished only in Theorem the main step being Proposition

We will need the following formula (copied from [Sai93| Proposition 4.2.] ) which describes the extension
of a mixed Hodge module over a smooth hypersurface. Let X be a smooth variety, let ¢, x1,...z, be
local coordinates on X and j : Y < X be a smooth hypersurface given by t = 0. Let M be a mixed
Hodge module on X \ Y with underlying filtered D-module (M, F M), then

FIH M =D 0 F VOHj M, where FIVOH M = VOH MO G(EIM) . (22)
>0

here VOH%j, M is the canonical V-filtration on the D-module H%j, M ~ j, M, as introduced in Defini-
tion

If Y is a non-smooth hypersurface locally given by g = 0, we consider (locally) the graph embedding
ig X — X x Ct
x> (z,9(x))

together with its restriction iy : X \ Y — X x C}. Notice that ij is a closed embedding. Given a mixed
Hodge module M on X \ Y we proceed as follows. We first extend the Hodge filtration of (i7) M over
the smooth divisor given by {t = 0} as explained above. Afterward, we restrict the mixed Hodge module
which we obtained to the smooth divisor given by {t = g}.

After these general remarks, we come back to the situation of the torus embedding h 4 : T — W described
at the beginning of this section. Consider the following commutative diagram

T

TR Al W,
o jtT (23)
W x Cg

where W* := W\ D =W\ {w;...w, =0} ~ (C*)" and where i4 is the graph embedding

ig: W — W xCy (24)
w (w,wy - ... Wy)
associated with the function g : W — C;,w +— wy - ... - wy. Notice that ¢y 0l4 factors over W x Cf. We

have the following isomorphisms
igiharOf = igplaykarOF = jiyid kay OF
Lemma 4.14. The direct image HOkA+(9§{ is isomorphic to the cyclic Dyy«-module
*./\;lf‘/ = DW*/j,'E
where jz; is the left ideal generated by (Ej + Bi)k=1,..a for B = (Bk)k=1...a € R? and (‘jm)meEA-

Furthermore, the Hodge filtration on M/ is equal to the induced order filtration, shifted by n — d, i.e.

EJ"Mar = Fy™4, g Dw-/ T} .
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Proof. We factor the map k4 from above in the following way. Let A = C - E - F be the Smith normal
form of A, i.e. C = (cpq) € GL(d,Z), F = (fyv) € GL(n,Z) and E = (14,04,n—q). This gives rise to the
maps

ke : T — T

(tl,...,td)0—> (51,...,561) = (Lgl,...7££d)
ki T —s (C°)

({huwfd)ﬁ(ﬁ)la'“vwn):(tlw"vtNdv]-v 71)
kp: (C)" — W™
(W1, .., 0n) — (Wi,...,wy) = (@1, ... @),

For v € Z® we have
kA+O;/~ =~ (kF okgo kc)+03« o kFJrkEJrkCJrO% .

Since all maps and spaces involved are affine, we will work at the level of global sections. We have
I(T,0}) = Dr/(Onte + Vk)k=1,...a = Dr/({tx0, + Y& + 1)k=1,..,q. Notice that the Hodge filtra-
tion in this presentation is simply the order filtration. Since k¢ is a change of coordinates we have
D(T,H(kc)+OF) ~ DT/(Zf:1 ckitiOf, + Yk + 1)k=1,....a and again the Hodge filtration is equal to the
order filtration. We now calculate I'((C*)", kgt kc+OF). We have

L(C)", Hkpiker OF) = T(T, Hkcr OF) [0gayss - - -+ O]

d

ﬁD(C*)n/(Z CkiWiOp, + Yk + Dg=1,....d, (Wi — 1)i=d+1,... n - (25)
=1

The Hodge filtration is (cf. [Sai93] Formula (1.8.6)])

R gy (CUC)" Hokp ke  OF) = > FHAT(T, 1%, 07) @ 97
p1t+p2=p
= > EITTH ke 07) @07 = By (N(C)", Hoke ke OF)) - (26)

p1+p2=p

Hence we see that the Hodge filtration on the presentation shifted by (n — d) is equal to the order

. . H _ d
filtration, i.e. Fp+(n_d) = Fyre.

The map kg is again a change of coordinates, so we have

I(C*)", Hkpikp, ke OF) 2~ Dgeyn/ (Z ki WiOw, + Vi + Di=1,...d, (W™ — 1)izdt1,...,n
=1

~ D(g+yn/ (Z akjw;iOuw; + Y + Di=1,....ds Om)met, | - (27)
j=1

where m, are the columns of the inverse matrix M = F~!. The first isomorphism follows from the
equality A = C - E - F. The second isomorphism follows from the fact that an element m € Z" is a
relation between the columns of A if and only if it is a relation between the columns of E - F. So the
Hodge filtration on the presentation shifted by (n — d) is again the order filtration. We have

n n n
D ks, + 1= a0,y = Y a; + et 1
j=1 j=1 j=1

Setting 7y, := >_j_, axj + Bi — 1, shows that

*Mﬁ/ _ ,HokAJ,_O?j:l a;+8-1 ~ ’HOkA-&-Oqﬁ“ (28)
where the last isomorphism is given by right multiplication with ¢~ 2i=1% %1 (here 1:= (1,...,1) €
74). O
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The next step is to compute the Hodge filtration of hAJr(’)é% ~ lA+kA+O? from that of kAJr(’)TBW. As the
map [, is an open embedding of the complement of a normal crossing divisor, we need to consider the
graph embedding embedding iy with respect to the function g = w; - - - w,. We proceed as described at

the beginning of this section, i.e., we first extend the module ig ka4 (’)Cﬁp over the smooth divisor {t = 0}.

Lemma 4.15. The direct image i;+kA+O§ is isomorphic to the cyclic Dy x ¢z -module Dw x¢; /Z° where
ZI° is the left ideal generated by (EV’,’f + Bi)k=1...a for B = (Br)k=1...a € R? and (ljm)melLAw Recall that
the vector fields ), have been defined in formula as By =30 bgiOw,wi+ ekt for k=1,...,d.
Furthermore, the Hodge filtration shifted by n —d+1 is equal to the induced order filtration, i.e., we have

Flflif(;"rkA-‘rO'lB—' ~ F;i(én—dJrl)DWXC? /0

Proof. We define

W= (W x €;) \ {t + g(w) = 0}

and factor the map ¢; in the following way. Set

LW — W
w — (w,0)
Iy : W — W* x C;
(w, ) = (w,t+ g(w))
and let I3 : W* x Cf — W x C} be the canonical inclusion. We have iy = l30l30l;. For the convenience
of the reader, let us summarize these maps in the following diagram

open embedding
complement of NCD

W W W x C,

la

open embedding

closed | I j
t complement of smooth divisor

i1 lo 13
W —— W* x C;‘ 2
~ closed on

support

W x Cg

Notice again that all spaces involved are affine, hence we will work with the modules of global sections.
Since 7 is just the inclusion of a coordinate hyperplane we have

(W, 1l kay OF) ~ T(W*, 1Ok OF)[07].
The Hodge filtration is given by

D(W,Ff (KOl kar OF) ~ > T(W* FEH ks OF) @ 07 (29)
p1+p2=p

Notice that F(W,’}-[OlHkAJrOéi) ~ Dy /17 where I7 is the left ideal generated by (Ex + Br)k=1....d>
(Elm)me]LA and E

Under this isomorphism the Hodge filtration on F(VIN/, ’HOlHkAJrOg) shifted by (n —d) + 1 is equal to
the order filtration by Lemma and . The map [5 is just a change of coordinates, hence under
the substitutions ¢t +— t =t + g(w), w;Ow, — W;Oyw, + g(w)0; = w;0y, + Ot for i = 1,...,n and by using
the presentation of H°(k A+(’)?) as acyclic D-module, we get that

F(W* X C:,H0l2+ll+l€A+O§w) ~ DW*XC;‘/ ((Ej}/c + /Bk)k}:17...,d =+ (Ijm)meEA + (t —wy ... wn))
~ Dwxcs/ (B + Bi)i=1,....a + (Om)mer,, ) » (30)

where E,; was defined in formula and A’ is the matrix defined just before that formula. Notice that
the Hodge filtration shifted by (n — d) + 1 is again equal to the order filtration.
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Since the support of Holg+ll+kA+O lies in the subvariety {¢t = g(w)}, the closure of the support in
W x Cf does not meet D x C;. We conclude that

D(W x C;, 108 kay OF) = T(W x Cf, HOls loy bk as OF)
~ T(W* x € H Loy by kot OF)
~ Dy xc;/ (B}, + ﬂk)k:l, L+ ('jm)m L)
~ Dwxc:/ (B + Br)k=1,....a + Om)mer,, ) -
The Hodge filtration is then simply extended by using the following formula
FHHOE  kas OF = FEHOU 1y 1y kA OF = 13 FPH Ly 1y kay OF
O

Proposition 4.16. Let 3 € R?\ sRes(A). The direct image Hojt+i;+kA+(97B~ is isomorphic to the
quotient /\;lg, = Dwxe, /T, where I' is the left ideal generated by (EV,,’C + Bk)k=1,....a and ('jm)melLA/-
Furthermore, if B € Ay, then the Hodge filtration on Dwxc, /T shifted by (n — d) + 1 is equal to the
induced order filtration, that is,

FHH jyid kar OF = F4 1 D, /T

Proof. First recall that we have an isomorphism HojtJri;JrkAJrO?w ~ Hoig+hA+Oéi. The composed map
igohay is a torus embedding given by the matrix A’. Hence, we have an isomorphism Hojt+i2+kA+ Og ~
./\;li/ for B € R? and 8 ¢ sRes(A’) = sRes(A). This shows the first claim.

For the second statement, suppose that § € 204. The formula for extending the Hodge filtration over
the smooth divisor {t = 0} is

FIME, = 0i(VOMY, 0 jugi P B MG . (31)

>0

At the level of global sections the adjunction morphism Mi, — Jerdi Mﬁ, is given by the inclusion

Mﬁ/ — *Mﬁ,, where *MA/ is the DWX@f—module from Lemma seen as a Dy« ¢,-module. Hence, at
the level of global sections, formula (31) becomes

FHMS, =3 0j(vONE, N EH 00,
i>0

Since we have Fp+(n A1) Mg, = F;’Td*Mf;, by the same lemma, we conclude that Fyf{de/ = 0. The

element 1 € M¥, is in VOM5, by Proposition and 1 € FH 15, = FgrN%, and therefore

(n— cl)-§—1>’<
le F(IZ d)+1Mfl" Notice that both (Mf‘,, F) and (Mﬁ,, Ford) are cyclic, well-filtered Dy ¢, -modules

(see e.g. [Sai88, Section 2.1.1], therefore we can conclude
d
Fr MA, C F+(n d+1)M /.
In order to show the reverse inclusion, we have to show

FeriM, o FRL gy M, =D 01 (VOME, N FR MY = 0i(VE M8, 0 Ferd=ars,)
>0 i>0

for all p > 0, where the last equality follows from Proposition [£.§] and Lemma Since we have
F;TdMﬁ, ) 8§F;1‘3M£/ for p>0 and 0<i<p
it remains to show

ErdMb, > VO MG, N Ferd M h, for p>0 and 0<i<p
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resp.
E MY, > V2 MY, N Fer MY, for p>0.

Now let [P] € V2

ind

Mﬁ, N F;Td*Mﬁ,, then P € Dy ¢, can be written as
P = t_kpk + t_k+1pk_1 + ...

with P; € Clwy, ..., wn]{0s, Ow,s - -+, Ow,) and Py # 0. Since t* . [P] € v;’;dMﬁ, N F;TdMﬁ, it is enough
to prove 3 3 3

RTINS, S Vi MG, 0 FOMY, for p > 0.
Given an element [Q] € V/F

kMR, 0 FgriMY, we can find, using Proposition a Q' € VFDyye, N
Fp,Dwxc, with [Q] = [Q']. But this element @’ can be written as a linear combination of monomials
tlowtt .. wh aPoop ...0br with po + ...pn < p and lg — po > k, hence Q'] € t’“FI;””de,. This shows
the statement in the case INA # Z (recall that NA # Z? was a condition used in Proposition .
In the case INA = Z? the support of Mi/ is disjoint from the divisor {¢ = 0}, hence the extension of
the Hodge filtration is simply given by Ff/\;lg, = jt*Ff*Mﬂ,. Since j; is an open embedding we have
Mﬁ, = *Mﬁ/ and therefore also F;{Mﬁ, = Ff*Mﬁ,. This shows the claim.

O

Now we want to deduce the Hodge filtration on h A+(’)§ from the proposition above.

Theorem 4.17. Let NA = ZYNR>oA and B € R?\ sRes(A). The direct image hA+O§i is isomorphic
to the cyclic Dyy-module ./\;li = Dw/j', where T is the left ideal generated by (Ek + Bk)k=1,...a and
(Em)m@LA. For B € A4 the Hodge filtration on Mi s equal to the order filtration shifted by n — d, i.e.
H B __ prord \ 4B
Fp+(n—d)M =My

Proof. Recall that we have j; oy o ks =50 ha where if is the graph embedding from . The map
iy can be factored by

io: W — W x Cy
wr— (w,0)
ly: WxC;—W xC
(w, 1) —~ (w, T+ g(w)).

Once again, we summarize the relevant maps in the following diagram.

WXC;

closed | 29

W : W W x C,

closed

e
g
open embedding

closed | [1
Jt| complement of smooth divisor

I3

closed on
support

W%W*XC: W x C;

We first compute HO(Z;1)+Mﬁ , with its corresponding Hodge filtration. Since (I,)~! is just a coordinate
change we get similarly to formula

F(W X C?, Ho(l;1)+Mﬂ/) ~ DWxC{/ ((Ek; + 6k)k:1,...,da ([jm)melLAa (,tv)) ) (32)

where the Hodge filtration on the right hand side is the induced order filtration shifted by (n —d + 1).
Notice that the right hand side of is simply M f‘ [0], hence the Hodge filtration on

MY =T(W, M%) = T(W x € HOig (1, )+ M)
is simply the order filtration shifted by (n — d) by [Sai88| Proposition 3.2.2 (iii)]. O
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Remark 4.18. Let Og* = D¢ /(0st + 8) and jo : C* — C be the inclusion. If B & {-1,—-2,-3,...}
then
Jo+ O+ = De/(it + B)

as well as
jOTO& ~ ]I))]0+]I))(’)C* ~ Djoy D+ / (0t + B) ~ D De/ (0t + B) =~ De/(t0r — )
If, additionally, § € (—1,0] holds then by Theorem
(Jo+ O, FJ1) = (D / (it + ), FI")

In order to compute the Hodge filtration on jOT(’)(}ﬁ_l we use that (D(’)é*ﬁ_l, F) = (De- /(0 +B), F&4)
and therefore (joJrID)O(EF_l,FpH) = (Dc/ (0t + B), Frd) holds, since we assumed 3 € (—1,0]. We use
the filtered resolution

O¢t+8

(De-, FJ79) (De-, FJ79)

to resolve (D¢ / (0t + B), FC™4) and apply Hom(—, (D¢, FI™%) @ wY) to compute the dual of (De/ (st +
B), F2r ) (cf. [Sai94, page 55] for the choice ofﬁltmtzon on D¢ @ wy ). This gives

or O~ F1) = (Do (19, — ), ™)
for B € (—1,0].

5 Integral transforms of torus embeddings

In this section we investigate how the Hodge filtration of ®¥ # hehaves under a certain integral transfor-
mation, which depends on a matrix Aand a parameter By. We show that the outcome of this transform
is isomorphic to the GKZ-system Mfgo’ﬁ ) (cf. Proposition . In the special case By € Z we will
show that the integral transformation mentioned above is isomorphic to the Radon transform of a torus
embedding.

The Radon transformation has been extensively used in the previous papers [Reil4] and [RS17] in order
to study hyperplane sections of toric varieties, more precisely, fibres of Laurent polynomials and their
compactifications.

In the first subsection below, we give a brief reminder of how certain GKZ-systems can be constructed
using the Radon transformation. The second subsection introduces an integral transform that is able to

produce all GKZ-systems M Wlth 6 ¢ sRes(A) and homogeneous A.

The next subsections (until [5.9)) constitute the main part of this section, where we study in detail how
the various functors entering in the definition of this integral transformation act on the twisted structure
sheaf. One can roughly divide the construction in two parts: In subsection we calculate the push-
forward of a tensor product between the twisted structure sheaf and a kernel to a partial compactification.
Then one has to study the projection to the parameter space (i.e., the space on which the GKZ-system is
defined). The calculation of the behavior of the filtration steps is non-trivial, as the higher direct images
of these filtration steps, being coherent O-modules, do not, a priori, vanish. However, we can show that
this is actually the case in the current situation. We formulate this result in the language of Z-modules
(i.e., using the Rees construction for filtered D-modules), and make extensive use of (variants of) the
Euler-Koszul complex of hypergeometric modules. All these intermediate steps are contained in the
subsections until A very important technical result is the calculation of some local cohomology
groups of a certain semi-group ring, contained in subsection The culminating point is then Theorem
which gives a precise description of the Hodge filtration on certain GKZ-systems.

5.1 Hypergeometric modules, Gauf3-Manin systems and the Radon transfor-
mation

Here we give a brief reminder on the relationship between GKZ-hypergeometric systems, Gauf-Manin
systems of families of Laurent polynomials as developed in [Reil4].
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As in [RST5] [RS17], we will consider a homogenization of the above systems. Namely, given the matrix
A = (ay;), we consider the system M%, where A is the (d + 1) X (n + 1) integer matrix

1 1 1

- " _ 0 aii A1n

A= (ay,..-,a,) =] . ) ) (33)
0 adi Adn

and B € C4+L.

In order to show that such a homogenized GKZ-system comes from geometry we have to review briefly
the so-called Radon transformation for D-modules which was introduced by Brylinski [Bry86] and vari-
ants were later added by d’Agnolo and Eastwood [DE03].

Let W be the dual vector space of V' with coordinates wy, ..., w,, and let Aqg, ..., A\, be coordinates for
V. We will denote by Z C P(W) x V the universal hyperplane given by Z := {37, A\;w; = 0} and
denote its complement by U := (P(W) x V) \ Z. Consider the following diagram

U
m \[ju &
P(W) «—— P(W)x V — 2 v (34)
T ZZ]\ T2
Z

We will use in the sequel several variants of the so-called Radon transformation in the derived category
of mixed Hodge modules. These are functors from D MHM(P(W)) to D*MHM(Dy) given by

*R(M) := nZ,(nZ2)* M ~ moyigifymi M,
R(M) :=Do*RoD (M)~ 7, (n{)' M ~ maiguiymi M
*Rest(M) := moumi M .
"Rest(M) :=D o0 *Regp oD (M) ~ mp,mi M .
"RY(M) = mgy (] ) (M) = maujunirmy (M)
RO(M) :=D o *RZ oD (M) = 5 (x{) (M) ~ Toujuapymi (M) .

The adjunction triangle corresponding to the open embedding ji; and the closed embedding ¢z gives rise
to the following triangles of Radon transformations

"R(M) — "Rt (M) — "R (M) - (35)
*RO(M) — *Rest(M) — *R(M) 5 | (36)

where the second triangle is dual to the first.

We now introduce a family of Laurent polynomials defined on 7' x A := (C*)?¢ x C" using the columns
of the matrix A, more precisely, we put

(pA:TXA—)V:C)\DXA, (37)

(t1y oo tay Ary o An) = (= D Nt An, o, M)

The following theorem of [Reil4] constructs a morphism between the Gau-Manin system H° (o4 + O7xa)
resp. its proper version H°(¢4+Orxa) and certain GKZ-hypergeometric systems and identify both with
a corresponding Radon transform.
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For this we apply the triangle to M = g DPQY and the triangle to M = ¢g.PQH, where the
map g was defined by

g: T — P(W)
(t1y . oytqg) = (1it% o tfn).

Theorem 5.1. [Reilj, Lemma 1.11, Proposition 3.4] Let A = (a;,...,a,) € M(d x n,Z) and A =

» S

(@p,Ays---,8,) € M((d+1) x (n+1),Z) be as above and assume that A satisfies
1. ZA =17
2. NA = Ry AN Z4+1

Then for every B € NA and every ' € int(NA), we have that

M =~ DMod (H" ("R2(9.”QY)))  and M7" = DMod (H "' (R (¢D"Q¥)))

FSES

If we define
ML= 1R 9P QE)) and MG = HTTTH (R (9D P Q)

the following sequences of mixed Hodge modules are exact and dual to each other:

H=Y(T,C) @ PQH HO(paPQH L) i’ HYT,C) @ PQH

SR T

0 —H"(*Rest (g*pQ¥)) - Hn(*R(g*pQJI!)) — H"! (*Re (g*ijbf)) - Hn+1(*Rcst (g*pQg)) —0

0= H " (Rest(9DPQY)) = H " (R(@D?QF)) < H™" (R (@DPQF)) = H ™" (Reat (9P Qf)) < 0.

R

Hyt(T,€) @ DPQE HO(paDPQY, ) =P Hy(T,C) @ DPQI!

Proposition 5.2. LetNB € NA and B € Ent(]Ng) There exists a natural morphism of mized Hodge

modules between HMZBI(—d —n) and HM%, which is (up to multiplication with a non-zero constant)
given on the underlying Dy -modules by

MG — M2
P P.9PF
where §9+5 .= [T, 8’;2 for any k = (ko, ..., k) with A k= E+ B’.
Proof. First notice that there is a natural morphism of mixed Hodge modules
H(paDPQF,4)(—d — n) — H (04" Q1 4)

which is induced by the morphism ]D)pngA(—d —n) — pngA. Using the isomorphisms in the second
column, this gives a morphism

H " ("R(@DPQF))(—n — d) — H"("R(9." Q1)) -
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Now we can concatenate this with the following morphisms

H"("R(9:"Q7)) H' ™ (*R(9:" Q7))

H("R(gDPQHE))(—n — d) +—— H " "1(R°(gDPQH))(—n — d) .

This gives the desired morphism of mixed Hodge modules between HM:Z’B l(—d —n) and HM%. Then it
follows from [RS17, Lemma 2.12] that the corresponding morphism of~ the underlying Dy-modules is (up
to multiplication by a non-zero constant) right multiplication with oP+A O

We will now prove a partial generalization of Theorem for non-integer .

Proposition 5.3. With the notation as above, let 8 = (8o, 8) € (Z x RY) \ sRes(A), then we have the
following isomorphism

DMod (K" (*R2 (9.7 T ™)) = M
This induces the structure of a complex mized Hodge module on Mg which we call HM%

Proof. Consider the following commutative diagram with cartesian square

hz -
J

C x T —l> W {0}

g

T——P(W)
where 7 is the projection to the first factor. We have
= =T 0, )
]+7T+g+(9§{ o~ ]+h+7r;(9? ~ hg+0§3*§)7~[1] o~ h_,.(?g”x@ [1]

for every By € Z. Let *R% : D%, (Dx) — Db, (Dx) be the corresponding functor for D-modules which is
given by M — moy ju+ j;]TFIM . We have the following isomorphism

“Re(g4 OF)[-n — 1] = FL(j 7+ g, OF[-1]) ~ FL(h 5, Of27) ~ M,

where the first isomorphism follows from [DEQ3], Proposition 1]. Notice that the various shifts, occurring
in the formulas above, stem from a different (shifted) definition of the (exceptional) inverse image for
D-modules in loc. cit. . O

5.2 Integral transforms of twisted structure sheaves

Unfortunately, the Radon transformation produces only GKZ-systems with 5y € Z, as we can see in
Proposition [5.3] To remedy this fact, we introduce a integral transformation which takes care of that by
twisting with a kernel which depends on .

Let T = (C*)? resp. T := (C*)4*+! be tori with coordinates ¢y, ...,tq resp. to,...,tq, W =V = C"*!
with coordinates wg, ..., w, resp. Ag,...,\, and consider the torus embedding with respect to the
matrix A

hi=h;:T—W
(to,...,td) — (to,totﬁl,...7t0tg”)
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If B o4 sRes(/T) the GKZ-system M% is given by FL(th(’)f;). Consider the maps

J

C*

where F is given by (t1,...,ta, Aoy - -+ An) = Ao+ Dry Ait%, where py resp. ps is the projection to the
first resp. second factor and where j is the inclusion.

Proposition showed that a GKZ-system with integer 8y can be expressed by a Radon transformation,
generalizing a result in [Reild]. The Radon transformation *RJ can be seen as an integral transform
from P" to C"*! with kernel jin?CE. Now, in order to construct GKZ-systems with general 3y we could
twist the kernel jprCg which means instead of using the constant module ng on U we could use a
rank one local system on U with monodormy €2 (notice that U has fundamental group isomorphic
to Z). However, due to computational reason we use a slightly different approach. Instead of embedding
the torus 7T in P™ and considering an integral transform from P™ to C"*! we directly define an integral
transformation from T to V' with a kernel depending on Sy and A (the matrix A is encoded in the
map F'). We prove in Proposition that the outcome of this integral transformation applied to the

Dr-module Og is indeed the GKZ-system M%. Finally, we prove in Proposition that this approach
is compatible with the original approach using the Radon transform from Proposition

The following proposition is a variant of a theorem of d’Agnolo and Eastwood [DE03|. It compares
the Fourier-Laplace transform of the twisted structure sheaf under a torus embedding with an integral
transform of the twisted structure on a smaller torus. The latter description is favorable since it naturally
equips the GKZ-system with the structure of a mixed Hodge module.

Proposition 5.4. Let 3 = (8o, 8) & sRes(A) then
M% o~ FL(h+O§;) ~ H2n+d+1(p+(qTOéi ®0 FT (]Toé*ﬁofl)))

Proof. Notice that the morphism h : T —» €™ factors as

TLoxT- 5w (38)
where j is the canonical embedding and k is given by (to, ... tq) — (to,tot2, ..., tot% ). Consider the
diagram

C~——L CxT b w CxT
f
p1 D12 q1 P12
idg kxidon41
Cx 0= oxrxy 22 gy CxTxV—2 T
q
p2 P13 q2 P13
C r TxV £ 1% TxV

where p;; are the projections to the factors ¢ and j, the maps [, ¢,p1,¢1 are the projections to the first
and the maps f, g, p, p2, ¢2, are the projection to the second factor.
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We have that j, (’)5; ~ iy Og‘i XOZ ~ l+j+(’)€‘l [—d] ®f+(’)§[—1] hence we get the following isomorphisms

FL(h, OZ)
~ FL(k+}+O§) factorization of h
+(q k+J+O ® L)[-n —1],
+(q+k+(z+ 0% @ 08 @ £)[-n—d—2), use 02 ~ O RO}
~ qo 1 ((k x id)4+plH(I75 +(’) f+(95{) ®L)[—n—-d-2], base change
=~ gy 4 (k % id) 4 (P (175108 @ fHOL) @ (k x id)* L£)[—2d — 2, projection formula
= gy, 1 (k x id) 4 ((id x F)*p{j, 0% ® gt OF @ (k x id) " L)[-n—2d 3], g=fopu,

lopia =pro(id x F)

~ piprs.((id x F)Tpfj. 00 ® g7 OF ® (k x id)* £)[-n — 2d — 3], popiz =gz o (kX id)
~ pipis((id x F)*pfj 0% @ gt Of @ (id x F)TLy)[-3n — 2d — 3],
=~ pip1s,+ (g7 OF @ (id x F)* (p} j+ O ® L1))[=2n—d - 3],
(

~ pipis 4 (Pizq T OF @ (id x F)T(p j1 O @ £1))[~2n — d — 3], g=qopis

~ p+(q+(9§1 ® p1a,4(id x F)*(pf ]+OC* ® L1))[-2n —d - 2], projection formula

~ po (gt OB @ Fpy  (py i+ 0% @ L1))[-2n — d — 2], base change

~pi(qt 07 ® FTj;06 ) [~2n —d - 1], FL(j; O%) = j;0g ™
~pi(q'O7 @ FTj;067 7 [2n + d + 1], g ~q'[2n + 2],

Ft ~ F'[2n 4 2d]
O

The isomorphism Mg ~ /H,2”+d+1(p+(qT(’)éz ®FTjT(96*B°_1)) which holds for 3 € R4\ sRes(A) endows
the GKZ-system with the structure of a complex mixed Hodge module. We define the mixed Hodge
module structure by

HM,B H2n+d+1( ( *pCﬂ ®F* p@ Bo— 1)) (39)

We now check that the Hodge module structure on M"% induced by the definition coincides with
the one of Proposition in the case 5y € Z.

Proposition 5.5. If By € Z and (Po, B) & sRes(A ) then there is an isomorphism
“Re(9"C ) In + 1] = pu(q™PCF © F*jPCa ™20 + d + 1]

Proof. Consider the following commutative diagram whose squares are cartesian




where Wy := P(W) \ {wy # 0} = C™ with coordinates wy,...,w, and Uy = U N W,. We denote by
P, Po, ™1 the projections to the first factor and by F' the map (w1, ..., wn, Ao, An) — Ao+ Z?:l Aw;. We
consider the coordinate change ¢g defined by

te=1t,fork=1,...,d, )\O—Ao—i—zx\tﬂ—F and \; =\ fori =1,.

i=1

on T x V and the coordinate change vy defined by

ﬁj:wjforjzl,...7n, X0:A0+Z)\iwj:ﬁ and Xi:)\iforizl,...,n

i=1

on Wy x V. Notice that with respect to these coordinates the maps I’ and F are given by the coordlnate
function /\0 Let pr : V. — C be the projection ()\0, el Py n) — Ao. We also have ¥po(go XZd)O(pO = goxid
and the map ¢ factors as mg 0 jg o (¢ X id). Hence we get

peqCr "’ ® F P Ce ™ 2n +d + 1]
*(q*pC:,F{”g®F*jngg*)[2n+d+ 1] use By € Z

~

~

*(”Cg’ﬁ X pr* jiPCH )0 + 1] F is a projection after coordinate change
do x id) o (go x id)).("C7" Rpr*jiP C)[n+1]  p =m0 (jo x id) o (go x id)
x id))« (90" CLP R pr* P CHN [n + 1]

~

joX’Ld

*

)
)
)
)
)«

?fkgo*p(Dg« ® F*jiPCH)[n + 1] F is a projection after coordinate change

(

o (jo x id))+(

( )
73 0 (Jo X zd) (?fgo*ng{"B ® ki F*PCE ) [n 4 1] base change, F' and F' smooth

(Jo x id))«(

(J )

=~ (2 © (jo * Tgo*p0¥’5®kygpﬁgo)[n+l]
m2 0 (jo % id))«((Jo ><id)!ﬂfg*pCH’B®kU'ngo)[n+1} 9= Jo°go
o Mo (159 PCP @ (o x id). ko PCHL ) [+ 1] projection formula

*

~ 7. (7] 9. PC7 @ jurPCY ) + 1]

—
N>

a Wz*jwjf]ﬁg*p@gﬂ[n +1] projection formula
~"R2(9:"Cp ) + 1]

where the isomorphism (x) follows from the fact that 7} g*ng is localized along the divisor P(W) \
W(]. O

5.3 Calculation in charts

We saw Subsection that the GKZ-system M% can be expressed by an integral transformation from 7'

to V with kernel F*jF (D*B o= As a first step we compute the Hodge filtration of an intermediate step in
this integral transformatlon namely ¢* pCH B ®Frj p@gfﬁofl [2n+d+1] (cf. Lemma . We do this
by giving different presentations of the kernel (cf. Lemma and by using several adapted coordinate
systems on T X V indexed by a variable v which goes from 0 to n. The reason for using these adapted
coordinate systems (and not just one) is the fact that we can rewrite the intermediate step as a direct
product whose factors are easy to compute. Since the projection p: T x V' — V is not proper, we have
to extend the intermediate step to a partial compactification. Concretely we are using the factorization

gxid

TxVIZSPW)xV -5V
of the projection q. Our goal in this section is to compute the underlying D-module A of

HA o 2n bt (g o id), (P CHP @ Fjp e —Po) (40)
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together with its Hodge filtration on affine charts W, of P(W) x V. The different adapted coordi-
nate systems are now used to compute the direct image of the intermediate step under the embedding
T x V — W, x V which is simply the restriction of A to the affine chart W,,. It turns out that the
underlying D-module of this direct image is a direct product of a torus embedding with respect to a
matrix A, and another rather simple module (cf. equation ) We use Theorem to compute
the Hodge filtration on the first factor in Proposition the Hodge filtration on the second factor was
computed in Remark .

We define the map

F,:TxV —C

(t17"'7td7A07"'aAn) — )\u +2Ai§giigu = (AO +Z)\zta1) 'iigu

(notice that Fy = F'). We need the following result
Lemma 5.6. There is an isomorphism
FrjrCe ot = Frjreg ™!
foru=20,...,n.
Proof. For u € {0,...,n} and G := (C*)? consider the action
Py :GXT XV —TxV
(g1s-ygartiy e ostas Aoy ooy An) = (B, ooty dog ™ ® o Ang %)

and the action G x C — C given by (g1,...,94,t) = g % -t. It is easy to see that the map
F : T xV — C is equivariant with respect to this action. Let ¢ : T — G x T the embedding

(t1y...ytq) = (t1,...,ta,t1,...,tq). Since jngg;_ﬁo_l is a G-equivariant mixed Hodge module, the

module F!jnggfﬂ“*l is also G-equivariant. Let p : G x T'x V. — T x V the projection. We have
isomorphisms

S e e L A O
where the second isomorphism follows from the G-equivariance of F™* j!p(D;I —ho—1, O

We define a coordinate change ¢, by

th=tr, (A)igu = (M)izu and Ay =X, + D At

Denote by C,, € GL(d+ 1,7Z) the matrix

— Qg 1

and define for 8 = (8o, 8) € Z4T1:

B = (B, 8"):=Cu-P
Notice that 3° = j since ag =0.

Lemma 5.7.
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1. With respect to the coordinates defined by ¢, the complex q* p@g’ﬂu ® Fjj!pﬁgfﬂran +d+1]
is isomorphic to
H,p* * - H,—fBp—1
pCT’ﬁ X pre P Cel o=y

where pr, : V — C is the projection (XO, e ,Xn) — Xu In particular we have
H* (q* ”Cg’ﬁu ® FJj;ng;‘ﬂ“‘l) =0 fork#2n+d+1

and the underlying D-module of H*"+d+1 ( *”CHB ®F*]upCH —Po= ) is given by the exterior
product
Dr/ (05t + B )k=1,...a) R Dy / ((3;i)i¢u,)\u8;u - ﬂo) .

2. For a € Z% and uy,uy € {0,...,n} the map
g2n+d+1 ( *p@Hﬂ ®F* pCH —Bo— 1) L, gqntdil ( *pCHﬁ 2+o¢®F* J'pCH —Bo— 1) 7

giwen by right multiplication with t* at the level of Dy «7-modules, is an isomorphism.

Proof. Notice that the map F, is just the projection ((ftvk)kfl sy (Ni)istu, Xu) > Xu with respect to the

new coordinates. This gives
¢ PO @ B O 2n 4 d 4 1) = PO Rprjr €l n)

(the shifts can be seen by noticing that ¢*[n + 1], F*[n + d] and prX[n] are exact. The rest is clear.
For the second point we define coordinates Let ((tk)k 1,...ds (/\1)1_07”%) and ((tk)k=1,...d ()\1)1_07“_7”)

correspond to the maps ¢, and ¢,,, respectively. The coordinate change ¢, o ¢, 11 is given by
Ek = Zkv ul = >‘u1 Z )\ til 7u1 S\u2 = Xulzﬁul _Quz, 5\1 = Xz
i# Uy
for k=1,...,d and i # u1,us. We get the following transformations:

ai =0y, — At 5);, =0y,
Xu1aX — o — )‘uz ez 71‘18/\ + j‘uzaxw —Bo= 5‘"285\142 —Bo

o5 — {2 *“155\”

u2

05

tk

t + Bt = Op, b — Z (ani — akul))‘ i 8)\ + (A, — aku2)5\u235\u2 + B
i;éul
= (9{)0{]6 + (akul — CL]ﬂLQ)/_\u,zaj\u2 + ﬂ;:l
= a{kfk + (akul - akuz)ﬂ@ + 6]:1
= Ot + By

where = means equality modulo the ideal generated by the operators on the left hand side. This shows
that
Dv/ ((axi)i;gul,)\ulaxuyl — ﬂo) X DT/ ((a~ tr + ﬁm) _ ,.H,d) )

is actually equal to
Dv/ (05, )iztuss MaOa., = Bo) B D1/ (g + B ke,

after the change of coordinates ¢,,, o ¢;11. It is then easy to see that the map

DVXT/ ((axi)i;éuw X 2 ﬁO» (&{ktk + ﬁUQ) ,,H,d) — Dv/<(aj\i)i¢uQ,5\u28)\ ﬁo, (8tktk + 5“2 + ak)kzl

is given by right multiplication with . This shows the second claim. O
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Let (wp : ...: wy,) be the homogeneous coordinates on P(W) and denote by j,, : W,, < P(W) the chart
w, # 0 with coordinates wj, := 4+ for i # u. The map g factors over the chart W, and gives rise to the

map

w i T — Wy
(t1, ey tn) > (E% % %)
We define the maps
Fy:W,xV —C

n

iz
As mentioned above we would like to compute the restriction of A to the affine chart W, x V. For
u=0,...,n we set

TN = TN,y = HPHH (g, x id). (q" PCE @ Frjr €
~ H™(gy X id)« (pC G &pruJIPCH —Po- 1)
~ H" (pgu*CH’B X pri i PCo. P~ 1)
~ ’Ho(pgu*@T’ ) RH" (pri: i PC —ho=dy (41)

We now apply the main result of section 4| in order to compute the module gu+0§u together with its
corresponding Hodge filtration.

Notice that the embedding g, is given by the d x n-matrix A, = (a};) with columns (¢; — a ) for
i €{0,...,n}\ {u}. We need to check whether the matrices A,, satisfy the conditions in Theorem

Recall that B = By, B") = - B.

Lemma 5.8. Assume that ZA = 7' and NA = Z%' 0 RsoA, then the matrices A, satisfy the
conditions,

1. ZA, = 7
2. NA, = Z* N R A,
3. if B € Ag then B € Ag,

Proof. Denote by A, the (d + 1) x (n + 1)-matrix with columns (1, a, —a,) fori € {0,...,n}. We will
first show the two properties for the matrix A Notice that we have C A Cy Ao A Since C,, is
a linear, invertible map we get C,(ZA) = A,, C, (]NA) A, and C, (IR>0A) IE{ZOA Therefore the

two properties hold for A, if and only if they hold for A.

Denote by p : Z4+ — Z< the projection to the last d-coordinates. Since p maps (1,a; —a,) to a; —a
it is easy to see that the first two properties also hold for A,,.

U

It follows easily from the definition that 5 € A5 if and only if B“ € A7 . Hence it is enough to show
that B = (Bo, ) € Az implies 3 € A4. We notice first that there is a 1-1 correspondence between facets
of R>0A and facets of R>¢A containing a, = (1,0,...,0) given by

F& F=F+Rso-(1,0,...,0)

If np is a primitive, inward-pointing normal vector of a facet F of ]R>0A the vector ng := (0,nF) is a

primitive, inward- pomtlng normal vector of the corresponding facet F of ]RZOA. Since ¢:= Y"1 ja; =
n+ 1,c), we have e Nz, C 0,np),(n+1,¢) = (ng,c) = er. We get by definition [15
F = \p

Bez= (R F-[0ez) T C [ {R-F—[0ep) et =p8€ [ {R-F—[0ep) c}=2a.

F facet F facet F facet
ag€EF

O
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Denote by L4, the Z-module of relations among the columns of A,. In order to calculate the direct
image of (951 under the map ¢, we use Theorem where A, takes the role of the matrix B in loc.cit.
Proposition 5.9. Consider the Dy, -module Mﬁ: as defined in Deﬁnition that is, ./\;lii = Dw, /ffl:
where the left ideal fﬁ: is generated by
ﬁmelLA“ = H wi — H w;,™
iFuim; >0 iFuim; <0
and the FEuler vector fields:
EY 4By = Z a0, Wi + B
= Z(akz - aku)aw,;uwiu + 6;: .
Then the direct image gu+(9§4“ is 1somorphic to Mﬁi Moreover, the Hodge filtration on Mﬁt is the
order filtration shifted by (n — d), i.e.
FH (n— d)MB“ _ FordMﬁu .

Proof. The statement follows from Theorem [£.17] and Lemma [5.8
O

We now want to compute how the D-modules gu+(’)7ﬁ«u glue on their common domain of definition. Let
uy,ug € {0,...,n} and denote by W,,,, the intersection W,,, N W,,,. We fix uj,us € {0,...,n} with
up < ug. We have the following change of coordinates between the charts W,, and W,,

-1

fori #uz and  Wyyu, = Wy,

— . -1
Wiy = Wiy Wy gy

which gives the following transformation rules for vector fields:

Wiy, Ow,yy = Winy Oy,  fOr i F ug Wuyu, 0wy, = — § Wiy Oy, - (42)
i#us

These transformation rules define an algebra isomorphism
—1
bujug + DWul [wugul] — DW [ ]

u1 ug

The module of global sections I'(W,, y,, guﬁ(’)gul) can be expressed as the quotient Dyy, [w UQUI]/IA

where fﬁu C Dw,, (w0, ] := Cl(wiu, )iz | [W05)5,] QC[(win, )izu,] PW,, 18 the left ideal generated by
n
LB 4B =Y 0 Ou, win, + B = Z 0j Wiy Oy, + Z a; k=1....d
i;iuol L#ul L#ul
H wzul H w;u?“ m € ILAul .
m; >0 m,; <0
ity ity

Let y"t := Zi#ul az;’ then jﬁ:ivufl C DWul[ 1:21“] is the left ideal generated by

n
u u
LY aftwi, Ow,.,, + By k=1,...,d
itug
_ L
= H Wiy, — H wm1 lela,,
1;>0 1;<0
itug itug
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We get the following isomorphism of Dyy, [w,},, ]-modules
— > 1 — - 3U] _~UL
Dwul [wuglul] Iﬁu — DW [wuglul} Iﬁ,ul K (43)
1— H wwl
i#uy

which is the image of the isomorphism
YU B -1 Bt
Or k — O
1 — t_')’ul — t7 Zi;ﬁul (Qifﬂul)

under the functor g,, + (cf. equation ) One obtains the same results for the chart W,,, by exchanging
uy and uy above. Using the transformation rules (42)), we can identify Dw, [wg},] with Dy, [w;!,.],
which gives a well-defined map

-1 ] B2 ="

ul _
Lulu2 DW [wuzul]/ A,“ ’Y — DW [w A

uq ug U1 U2 ug

We can now give an explicit expression for the gluing map between the various charts of the module
B
g9+ OT'

Lemma 5.10. The isomorphism between gulJr(’)éiu1 and guﬁ(’)gjw on their common domain of definition
Wiius = Wu, N W, is given by

F(WuluzagulJrOT) :DWul[ uqu/[ﬁ 1 — DW [ uluQ]/ A — (Wu1uzvgu2+OT>
Pr— Lulu2(P)ij;}2 .

Proof. This follows easily from the discussion above by concatenating the three maps

1_~u1
Dw [ UQU1]/ A“ _)DWul[ uzul]/Iﬁ " —>DW [

uQ U1 UQ]

u __ A u2 _ . QU2
/13,77 — D, lwi /15,

U1uU2 2

and by using the simple computation

. _ ,,n+1
H Wingy | - H wzul = Wy uy

i;ﬁuz 74#“1
O
Consider the following change of coordinates 6, on W,, x V.
Au = Ay + Z )\jwju R Xl =)\, and Wy, = Wiy (44)

J

i#u
for i = 0,...,n and i # u. Notice that 6, o (g, x id) o ¢7 g, x id and F, is just the projection
((ﬁjzu)z#ua )\07 ey )\n) = /\u
Proposition 5.11. Consider the original coordinates ((ww)#u, (/\07 cesAn)) of Wy x V. Then there is

an isomorphism of Dw., xv-modules N, =~ Dy, XV/ICA , where IC5 18 the left Dw, xv-ideal generated
by the following classes of operators

n n
L Z i Owy, Win — Z argiNiOx, + Br
' i=1

itu
2. Op = H wit — H wy, melya,
m; >0 m; <0
idtu idtu
3. Oy, — wiyOh, for i=0,...,nandi#u

4.3 " Noa, — Bo
j=0
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Moreover, for E: (Bo, B) € A3z and By € (—1,0] we have

F+(7L d)NufFOTdDW XV/’Cﬁi;

P
Proof. Recall that NV, = Mﬁu X Dy / (( )#u, ﬂo> = va/lzgz, where
Ko = (B + Bk=1,as Oodmer, + (05 )izas Ouds, = Bo)) -

Using the coordinate transformation we see that l%ii is transformed into the ideal ICZu generated
by the operators

n
§ :azl(awm_)‘laku)wzu'f'ﬁg k:L,d
itu
myg —m;
= I[ wiv = 1] wi mely,

m; >0 m; <0

i#u i#u
Oz, — WinOx, for i=0,...,nandi #u

(A + Z Ajwju)Ox, — Bo.-

J#u

The last operator can be rewritten (using the relations 9y, — w;, 0, , i.e. the third class of operators) as

u?

Z Aoy, — Bo = (Au + Z Ajwiu )0, — Bo -
i=0 -

j=
jFu

n
The Euler-type operators Y a};(Ow,, — AiOx, )W, can be further simplified by writing
=0

i%u

Z Wi (Ow,,, — XiOx, Jwin + By = Z i (Ow, Wi — XiOx,) + By

= 1=0
iFu iFu
= Z aklaﬂhu Wiy — Z akl)\ a)\ + gy Z Ai a)\ + ﬂk
i=1 =0
1#11
n n
= E i Oy Wi, — E ariNiOx, + aruBo + By
i=0 =1
i%u
n n
= E i Oy, Wi, — E ariNiOx, + Bk,
i=0 =1
iFu

where the first equivalence follows by using the relation Z? 0 N0y, = (A —i—Z?—o AjWjy )0y, from above.

Hence we obtain the presentation N, ~ Dy, v/ IC 4, » and the statement on the Hodge filtration follows
directly from Proposition O

5.4 A Koszul complex

In this subsection, we will construct a strict resolution of the filtered module (N, FH). For this purpose,
we first describe an alternative presentation of the ideal ngu C Dw, xv- Let AS be the (d+1) x (2n+1)-
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matrix with columns (0,49 — a,,),- - -, (O,Q/u?Qu), .., (0,4, —a,), (1,ap),-..,(1,a,) (here the symbol

"~ means that the zero column (0,a, — a,,) is omitted). In other words, we have

0 ... O0]1]1 ... 1

1
0
b Ay : A
0

We prove in Lemma that the D-module underlying N, is isomorphic to a a partial Fourier-Laplace
transformed GKZ-system with respect to the matrix A? and parameter /3,. With the help of the results in
sectionwe construct a D-free strictly filtered resolution of the filtered module (N,,, F/T) in Proposition
. 10l

As a first step we prove some properties of the matrices AJ.

Lemma 5.12. If, as before, ZA = Z9+' and NA = Z%' N RxoA hold, then we have ZAS, = 74+ and
INAS = Z4H QR AS.

Proof. From ZA = 74 we conclude ZAS = 7! since evidently ZA C ZAS. Hence it remains to
show that the semi-group INA3, is normal. We have

0 ... 0of1]1 ... 1

1
O o~ o~ o~
Cy- Al = =:(a},...,ar,a9,a),---,an) € M((d+1) X (2n+1),7Z),

Ay E Ay
0

where C,, € GL(d 4+ 1,7Z) is the matrix already used in Lemma It suffices to show the normality

property for the semi-group IN(C,, - A%) since C,, is an invertible linear mapping, hence a homeomorphism.
Suppose that we are given a linear combination

n

n
v=>Y"Nal+ > pay € 2t
i=1 3=0
where A;, tj € R>o. Then v =>"" | (N + pi)a¥ +ag - (Z?:o Hj)- Clearly, >-7_y n; € N, and moreover,
the vector Z?:l()\i + p;)ay lies in R>oA,, but the latter semi-group is normal according to Lemma
Hence we have >, (\; + p;)a? € INA,, and therefore v € NA,, C IN(C,, - A%), as required. O

We now show that A, can be interpreted as a partial Fourier-Laplace transformed GKZ-system. For
this we consider the GKZ system M4s on W, x V with coordinates (W;y)i#u, Ao, -+, An. Let FLy, be
the partial Fourier-Laplace transformation which interchanges 0y,, with (wiy)izy and g, with —0,,, .

(V)=
Lemma 5.13. Let Igibe the left Dw,xv tideal generated by the operators
)

Do =[] wi T o5 - TT wa™ TI o3"

m; >0 1;>0 m; <0 1;>0
i#u 0<i<n i#u 0<i<n

where (m,1) = ((M4)izu,lo, -5 1n) € Las,

) n n
By = Bri=—_ a}i0uw, wiw + »_ariXiOx, — B for k=1,....d
i=0 =1

itu

v)
(notice that the operators E}' are the same operators as inProposition|5.11| 1. above, but multiplied with

—1, which is useful for a Fourier-Laplace transformation that will be performed below) and

(V)

Ey — Bo = ZAz’aAi —Bo-
i=0
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(V)= = ()~
Then we have Iﬁi: IC%;, and hence the Dw, xv-module N, is isomorphic to Dw,xv/ I ﬁu In other

words, we have an isomorphism B
N ~FLy M.
) .
Proof. For the first statement, notice that [ (,, ) equals the operator [, from the definition of the

) .
ideal ICy,. On the other hand, one can obtain all operators [, ;) from the operators U, o) using the
relations 0y, — w;, 0y, . The last statement follows by interchanging 9,,,, with —;, and w;, with Oy,,

in the classes of operators of type 1., 2., 3. and 4. in the definition of the ideal IC%;’. O

In order to construct a strictliﬁltered resolution of A, we use the theory of Euler-Koszul complexes,

which we explained in section It will be be applied to the Dy, . \,-module Mi’i . As before, we work
at the level of global sections.

Let F® DWMV the filtration on DWMV corresponding to the weight vector

W = ((weight(Wiy) )iz, (Weight (0w, , ) )izu, weight(Ag), . . ., weight(A,, ), weight(dy, ), . . ., weight(9x,,))

=(1,...,1, 0,...,0, 0,...,0 , 1,...,1 ).
N—— N—— N—— N——
n—times n—times (n+1)—times (n+1)—times

Notice that this filtration corresponds to the order filtration F,"’“dDWuXv under the Fourier-Laplace

transformation functor FLy;, . We obtain a filtered resolution ((K3,d), F%) of Mﬁ“ Using Remark
we show that resolution is strict.

Lemma 5.14. The Euler-Koszul complexr (K2, FY) is a resolution of (Mg,F,“’) in the category of

filtered DWuXv—modules (with respect to the filtration Ff’DW“Xv), i.e., we have a quasi-isomorphism
K3 — Mas and the complex K3 is strictly filtered.

Proof. By Remark above it is enough to show that H‘i(Grfw K?2)=0fori>1and HO(Grfa K?) ~
Grl” My . Denote by GDy;, .\, = Gr¥ Dy, .y the associated graded object of Dy, |y, by (9iu)izu the
symbol of (0, )izu and by u; the symbol of dy; in GDWMV. Since O(yy,p) is homogeneous in (9y;) and

iu

ordg(0w,,) = 0 for all i # u we have
er(DWuxV/DWuxVJAZ) = GDWHXV/JEX;
where J9. is generated by

Owp = [ om T] e = I o7 I] w®

m; >0 1;>0 m; <0 1;>0
it 0<i<n irtu 0<i<n

Notice that
GDWHXV/J;Z?‘ ~ C[(wiu)i;ﬁua AQy e v vy /\n] K C[]NAZ}

The associated graded complex Gr® K is isomorphic to a Koszul complex

,,,,,

where 9E}! is defined by

n
QEI? = Z a};iwmﬁiu + Z ki A [ for k=1,...,d

i#u i=1

and

gE(l)t = Z )\iui
i=0
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It is shown in [BZGMI5, Theorem 1.2] that the 9E}* are part of a system of parameters. Since INA?
is a normal semi-group (see Lemma above), the ring GDy, v /J%. is Cohen-Macaulay. Hence

(9B} ) k=0,....a is a regular sequence in GDy, .\, /J3.. This shows that H~"(Gr% K®) = 0fori > 1. On the
other hand, it follows from [SST00, Theorem 4.3.5] that H%(Gr% K?8) = GDy,. v/ (T4 + OB k=0,....d) ~

Gr¥ M ﬁs , as required. O

()
As a consequence, we obtain the filtered resolution of N, we are looking for. Let J As be the ideal in

)
Dy, xv generated by the box operators [ (,, ;) for (m,1) € Las. Put

w_, V)
KE,'= @  Dwuxv/Jasei..i
0<iy<...<iy<d

and define
) )

v
K3 = Kos(Dw,xv/ Jas,( E} — Br)k=o,...d) »

) )

where the E'} denote the (pairwise commuting) endomorphisms of Dy, xv/ Jas induced from right
) ) W)

multiplication by E'} on Dy, xv. Define a filtration {Fo K3} on K ? by

(V) V)
. ord
FKL= P o (n—ayPwuxv/ J as.
0<ir <...<ip<d

Then we have

)
Proposition 5.15. We have a filtered quasi-isomorphism (K &, Fy) ~ (Ny, FZ™) ~ (N, F.Ii(nfd)), i.e.

)
the complex (K %, Fy) is a resolution of (Ny, FE. _,) in the category of filtered Dy, xv -modules.

)
Proof. The filtered quasi-isomorphism (K ®,F,) ~ (N,, F2"®) is obtained by applying the Fourier-
Laplace functor FLy;, to the (filtered) Euler-Koszul complex (K3, F&) from above (using Lemma .
The second filtered (quasi-)isomorphism (N,,, FS™®) ~ (N, Fﬁ(nfd)) is just the content of Proposition

BIT O

5.5 Z%-modules

In Subsection we explicitly computed the filtered D-module (N, FH) in the charts W, x V. Since the
direct image of A under w5 : P(W) x V — V is the GKZ-system we are looking for we would just need
to compute a filtered version of Rma, DRP(W)XV/V(N ) using a Cech argument. It turns out that the
theory of Z-modules is most suitable for this task. Hence here we lift the results of the Subsection [5.4] to
the level of Z-modules. Following [Sab05], we first recall very briefly the basic notion of Z-modules and
the Rees construction which provides a functor from the category of filtered D-modules to that of -
modules. In Proposition we compute the corresponding Rees object of NV, and of its resolution [5.18
We glue these resolutions in order to obtain a global resolution of the Rees object of N in Proposition[5.19

Let X be a smooth variety of dimension n. The order filtration of Dx gives rise to the Rees ring
RrDx. Given a filtered Dx-module (M, Fe M) we construct the corresponding graded RpD x-module
RrM =Dy FpMzF. In local coordinates the sheaf of rings RpDx is given by

RrDx = Ox[2){204,, ..., 20z, )
Denote by £ the product X x C. We will consider the sheaf
Ry = O Qo] RFDx
and its ring of global sections

Ry =2, Za) = Ox(X)[z){204,...,20z,)
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Given an RpDx-module R M the corresponding & 4 -module is
M= Oy R0x1z] RpM

This gives an exact functor .7 from the category of filtered Dx-modules M F(Dx) to the category of
R a--modules Mod(Z o)

T . MF(Dx) —s Mod(%2)
(M, FoM) — A

We denote by Modg.(Za) the category of #Z g -modules which are quasi-coherent O g -modules. We
denote by QY = Z_lQﬁcxc/c the sheaf of algebraic 1-forms on 2" relative to the projection & — C

having at most a pole of order one along z = 0. If we put Q’f% = /\le%, we get a deRham complex
0— 0y L0l 2 4
— O — Qg — ... — Qyp —0

where the differential d is induced by the relative differential dx y¢/c. If X is a smooth affine variety we
get the following equivalence of categories.

Lemma 5.16. Let X be a smooth affine variety. The functor
(% ,e): Mody(Z2) — Mod(Ra)
is exact and gives an equivalence of categories.
Proof. The proof is completely parallel to the D-module case (see e.g. [HTTO8, Proposition 1.4.4]). O

One can also define a notion of direct image in the category of Z-modules. Since we only need the case
of a projection, we will restrict ourselves to this special situation. Let X,Y smooth algebraic varieties
and f: X xY — Y be the projection to the second factor. Similarly as above we have a relative de
Rham complex Q'%X@/@ = zilexyxc/Yxc. If A is an Z 9 «o-module the relative de Rham complex

DR gy jav (A ) is locally given by

dr

z

d(w®m):dw®m+2( LA W) ® 205, m

i=1
where (2;)1<i<n is a local coordinate of X. The direct image with respect to f is then defined as
fv M = Rf. DR gy )y (M )[0]
Recall that for a filtered D-module (M, Fe M) the direct image under f is given by
FeM =R (05 M= Oy yy @M= 0= Dy @ M= 0) 1)
together with its filtration
F,f M = Rf, (o = FuM = Oy )y @ FpptM =5 = D%y © FypnM = o) [n]

Notice, however, that if (M, Fe M) underlies a mixed Hodge module on X x Y, then the Hodge filtration
on the cohomology modules of the direct image complex is not, in general, given by this definition, unless
X is projective. It is a straightforward exercise to check that the functor .7 commutes with the direct
image functor f,.

We will apply this to the filtered D-module (N, FX) as defined in equation in order to compute
HOmo N =~ 7—[2”+d+1(p+(qT075~ ® FTjTOE*Bofl)) together with its corresponding Hodge filtration. We
will denote by & x ¥ the space P(W) x V x C. The corresponding %Z-module is

N = T(N) = Oy @0py v 1] Ron N
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The direct image with respect to 7o is then given by
TasH = Rigu (0= = Qb @ N =5 o> Qg @ N = 0) 1) (45)
Since this is rather hard to compute, we will replace the complex

0= A = Qpyyy @N = .. 5 W)y @A =0

by a quasi-isomorphic one. For this we will construct a resolution of A4". Let #, x ¥ := W, x V x C
and denote by .4, the restriction of A" to #, x ¥. We write Ry, xy = T(#,, X ¥, %w, xv), then the
module of global sections of .4, is the Ry, x»-module

N, :=T(# x ¥V, N,).
Proposition 5.17. The Ry, «v-module N, is isomorphic to
2" Ry, v lag

where 145 is generated by

Oy = [ wi T o) = [1 wam TI z0s07".

m;>0 ;>0 m;<0 1;<0
iFu 0<i<n iFu 0<i<n

where (m, 1) = ((Mi)izu;los - - In) € Las,

EZ — By = — Za}jizawiuwm + Zaki)\iza)\i — Bk for k=1,...,d
i=0 =1

iFu
and .
Ey — Bo = Z AizOx; — Bo
i=0
Proof. This follows easily from Lemma[5.13] and Lemma [5.16 O

We will now define a Koszul complex K¢, in the category of R,-modules which corresponds to the Koszul

) _
complex K 7, alluded to above. Write J4s for the left ideal in Ry, x» generated by all operators U, ;)
for (m,1) € IL4s, then a computation similar to formula shows that the maps

Ry, xv/Jas — Ry, xv/Jas
P—P-(E,—fB) for k=0,....d (46)

are well-defined. Since [EZI - Bkl,ﬂz — Br,] = 0 for k1, ko € {0,...,d} we can built a Koszul complex
K:L = Kos (Zn_d . Ryyuxy//JAi, ( EZ — Bk)k:o,...,d)
whose terms are given by
n
Zn_Qd_l'RWux‘///JA:; BN @z”_d_l'RWux“I//JA; e1INEN. .. Neqg — z”_d~R7//uX«;//JAi e1N...Neg
i=1
Lemma 5.18. The Koszul complex K, is a resolution of N,,.

Proof. In order to prove the lemma it is enough to apply the exact Rees functor 7 to the Koszul complex

)
K7 which is a strict resolution of N, in the category of filtered Dy, xy-modules by Proposition [5.15

O
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We denote by #,° the corresponding resolution of .4, = Ay, «xyv. We are now able to construct a
resolution of 4.

Proposition 5.19. There exists a resolution J£® of A in the category of X s «v-modules which is
locally given by

DH, x ¥V, %) =K,
Proof. The resolution .#"* is constructed by providing glueing maps between the Ry, ,, x»-modules

(W irus X Vs H5) 2 K [winen] — T(Wuy X V', H5) = K3 [w5,)]

ulu2

which are compatible with the glueing maps on

C(Wiyus X Vs Nay) = Nul[w;;ul} — T(Wiyus X Vs Nuy) = Nu, [wil ]

ulu2

Notice that the latter maps are given by

Nul[w_l ]‘>Nu2[w_l ]

u2ul ulu2
n+1
}) — Luluz(lj)luulug

which follows from Lemma [5.10] and by tracing back the functors applied to g,+Or. Using the same
argument as in Lemma [5.10[ shows that the maps

K3, [Wiz1] — K3 [wotyo)
Pty (P)w"+1

U1 U2

are well defined. We have to check that they give rise to a morphism of complexes. But this follows from
the commutativity of the diagram

P 1, 0, (Pt}

Ui u2

Ry v /Iy ———— Ry, xv /Ju,
E;—Br E;?2—Br
Ry, xv [ Iuy ————— Ry xv/Ju,

P— 1 (P)wlt!

Uiu2

5.6 A quasi-isomorphism

In order to compute the direct image of the Z-module .4 under 7o we have to deal with with the relative
de Rham complex DR gy /y(A) (cf. formula ([d5)). In this subsection we show in Proposition
that this complex is quasi-isomorphic to a complex £ which is the top cohomology (with respect to
the deRham differential) of the double complex DR 5y, (% *). In Proposition we give a local
description of this complex £® on the charts %, x 7.
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As announced above we now apply the relative de Rham functor DR 5,y /4 to the resolution £® and
get a double complex Q;:Z“I/ Jy ® HC:

n—1 dm° n
. » oy gy @K 0 QY @ KO

Idnfl.OT Idn‘OT

ne1 B gt " B
» gy @K QY @A

I [

X

The corresponding total complex is denoted by Tot (ana,, Jr ® H ').

Proposition 5.20. The following natural morphisms of complezxes

X X

ALy 1y @ N e Tot (Wl @ H) —— Oy @ K 1d (U5, @ X" = 2

are quasi-isomorphisms.

Proof. Since the double complex Q‘gj;ﬂf/ v ® #® is bounded we can associate with it two spectral se-
quences which both converge. The first one is given by taking cohomology in the vertical direction which
gives the ; Fh-page of the spectral sequence. Since £ ® is a resolution of .4 and ng,xy /v is a locally free

(i.e. flat) Opyy-module for every | = 1,...,n, the only terms which are non-zero are the IE?’q—terms
which are isomorphic to Q‘g: vy ® . Hence the first spectral sequence degenerates at the second
page which shows that Qg;ﬂ,/ /v ® N« Tot (Q',;QV Jy ® K ') is a quasi-isomorphism.

We now look at the second spectral sequence which is given by taking cohomology in the horizontal
direction. We claim that ;rE}"? = 0 for ¢ # 0. It is enough to check this locally on the charts #,, x ¥
using, moreover, Lemma [5.16] at the level of global sections. Notice that the complex

(W x V Q1 1y @ K

X

is isomorphic to a direct sum of Koszul complexes Kos®(2~ 'Ry, x v /J 4z, 1 (20u,,")iu)) where each
summand is given by

Zn_d_lRWux“I//JA‘fL — s — Z_d_lRWux“i//JAflel N...Ne,.

The quotient RWuxv/JAg can be written as

C[Z7 (Zawiu)i#u] ®C[z] (C[Za AOv ey Anv (wzu)z;éu]<zax\oa B Za)xn>/ ((i(m’l))(m,l)elLAs ))

Since the operators z0,,,- act only on the first term in the tensor product, we immediately see that
1BV =0 for g # 0.
The fact that Tot (Q};nw/"y ® ,%/') — Z° is a quasi-isomorphism follows from the fact that ;; EP?2 = 0

X
for ¢ # 0, i.e. the second spectral sequence degenerates at the second page. O

The next result is an explicit local description of the complex .£°.
Proposition 5.21. For any u € {0,...,n} define the ring
Sw,xv = Clz, Ao, .. s Ans (Win)izu](20xgs - - - 204,,)
and denote by & the sheaf of rings on & x ¥ which is locally given by
D(H X VL) =Sy, xv
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with glueing maps

SWul Xy/[w1721u1} —> SWuz de/[wljllug]
P 4,0, (P)

Denote by Jas the left Sy, « v -ideal generated by the Box operators i(m,l) for (m,l) € ILas . Note that this
is a slight abuse of notation, as the ideal generated by the same set of operators in the ring Ry, «v was
also denoted by Jas, but which is justified by the fact that these generators do not contain the variables
20y, - Then the complex £° is given locally by

F(% X ”//’f’) ~ KOS.(Z_dS«///uXAV/JAi, (Ek — ﬁk)kzow,)d) (47)
whose terms are given by
ZﬁQdilsWuxy/JAi — ... —> ZﬁdSy//uxy//JAiel AN...Neg

where

Ek_ﬂk 3:Zaki>\i28)\i—ﬂk for k=1,...,d

=1

By —Bo =Y Nizdx, — Bo

=0

Proof. Tt follows from Proposition[5.20|that the 0-th cohomology of the complex (Q;’QV sy ® HP, Ud°’p>

is a direct sum of terms of the form H®(2~?Kos®(Ry, xv/Jaz, L(20w,,")iu)). Taking the cokernel of
left multiplication on Ry, w v /J As by 20,,, shows that we have an isomorphism of Sy, »y-modules

HO(Z_dKOS.(RWqu/JAi, (Zawm)wgu)) ~ Z_dSWuxy//JAZ.
Hence equation follows. O

The ideals J 45 glue to an ideal # C .#. Notice that the Euler vector fields (Ek — Bk)k=0,....a are global
sections of .. We recall from Proposition that the glueing maps for I'(#, x ¥, Q% ., ® AP) are
given by:

n n
—n—1 n+1
/\ dwiul ® P ? /\ dwiuz : (wu1u2) @ Luyuy (P)wulug
i=0 =0
iFuq iFuUg

Since both powers of w,,,,, on the right hand side cancel when considering the quotient .#?, we see that
L~ Kos* (2747 7, (Ex — Br)k=o0....a)

Summarizing, Proposition [5.20] and Proposition [5.21] show that instead of computing the direct image
we can compute

Rrg. (£*) =~ Rma. (27K o0s* () 7, (Ex — Br)k=o.....d)

5.7 Computation of the direct image

In this subsection we continue our computation of mo A" ~ R, (Z*®). Because ¥ is affine it is enough
to work at the level of global sections (cf. Lemma ). We get:

R, (£*) ~ RT R, (£°) ~ RI(Z*) ~ RT(Kos®* (2~ %%/ _#,(E — Br)k=o.....d)) (48)

where the first isomorphism follows from the exactness of I'(¥', e). Hence we have to consider the hyper-
cohomology of a Koszul complex on ./ 7.
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We will show that each term of this Koszul complex is I'-acyclic. For this it is enough to show that
| # is I'-acyclic. In Proposition we show that ./ _# is acyclic and its corresponding associated
graded module has an easy description in terms of the ”semi” R-module S/J4s on C, x W x V if all local
cohomologies of S/J4s with respect to the ideal (wy,...,w,) vanish. Finally we show in Lemma
that the computation of these local cohomologies can be reduced to the computation of local cohomology
groups of semigroup rings, which is a problem in commutative algebra and which we tackle in section[5.8

Recall that & x ¥ = C, x P(W) x V. We denote by # x ¥ the space C, x W x V. Let
S = Clz, W0+ s Wiy Agy - -« s An]{(200gy - - -5 200,)

and consider the S-module

where the left ideal J 4+ is generated by

Oemy) = H w; H(za)\i)li — H w; ™ H(za)\i)_li for (m,l) € Las,

m; >0 1;>0 m; <0 1; <0

the matrix A® is given by

11 10 0 0
0 0 11 1
AS ::(Q(S)v”wgfwbgv""bfz) = 0 ail Q1n 0 ail A1n
0 aq1 Qdn 0 Qaq1 Qdn

and L4s is the Z-module of relations among the columns of A®. Notice that S/J4s is Z-graded by the
degree of the w;. Denote by S,,, the localization of S with respect to w,, then one easily sees that
the degree zero part [Sy, /Jas]o of Sw, /Jas is equal to T(#, x V',.7/ 7) =~ Sy, xv/J as if we identify

w;/w,, With wg,. Let S/J4s be the associated sheaf on &2 x ¥ having global sections [S/J4:]o, then we
obviously have

S/Jas =S 7
Define
T.(7) 7)) =@T(2 x ¥, (7] F)(a)

a€Z

We want to use the following result applied to the graded module S/J 45

Proposition 5.22. [Gro61l, Proposition 2.1.8] There is the following exact sequence of Z-graded S-
modules
0 — H{y (S/Jas) — S/Jas — Tu(L/ F) — H{ ) (S/Jas) — 0

and for each i > 1, there is the following isomorphism

P H(P x V. (7] 7)) ~ HEN(S/Tar) (49)
a€Z
where (w) is the ideal in C[z, Ao, ..., An, Wo, ..., wy] generated by wo, ..., wy,.
Proof. In the category of C[z, A, ..., Ap, wp, . . . wy]-modules, the statement follows from [Gro61], Propo-
sition 2.1.3]. The statement in the category of S-modules follows from the proof given there. O

In order to compute the local cohomology of S/J4s we introduce a variant of the Ishida complex (see
e.g. [BH93| Theorem 6.2.5]). Let T := Clwy, . .., Wn, 20, - - ., 20x,] C S be a commutative subring and
let C[INA?®] be the affine semigroup algebra of A®) i.e.

CINA®| = {y¢ € Clyg,....yr\1) | c€ NA® C 22}
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We have a map
Dys : T — C[INA?]
w; >y
205, — Y%
Notice that the kernel K4s of ®4s is equal to the ideal in T" generated by the elements [ ;), hence
T/K s ~ C[INA?

Remark 5.23. The Z-grading of T by the degree of the w; induces a Z-grading on C[INA®| since the
operators Oy, ;) are homogeneous. The semi-group ring C[INA®] C C[Z?] carries also a natural Z4+2-
grading. Looking at the matriz A® one sees that the Zi-grading coming from T is the first component of
this 7.2 -grading.

We regard C[INA®] as a T-module using the map ® 4, which gives the isomorphisms
S/JAS >~ S®T T/KAS >~ S®T C[INAS]

We want to express the local cohomology of S/J4s by the local cohomology of the commutative ring
C[INA®]. For this, let T be the ideal in C[INA®] generated by y%,...y%  then we have the following
change of rings formula:

Lemma 5.24. There is the following isomorphism of Zi-graded S-modules:
H{,(S/Jas) ~ S @p Hf (C[INA®))

Proof. Notice that if S was commutative this would be a standard property of the local cohomology
groups. Here we have to adapt the proof slightly. First notice that it is enough to compute H, (kw) (S/Jas)

with an injective resolution of T-modules. To see why, let I® be an injective resolution (in the category
of S-modules) of S/J4s. Since S is a free, hence flat, T-module, it follows from Homg(S &1 M,I) ~
S @ Homy (M, I), that an injective S-module is also an injective T-module. Therefore we have

H{y () Jas) = H'T () (I°) = H*T' 1o (1°) ~ Hf/(S/J a0)
where I’ is the ideal in T generated by wy, ..., w, and the second isomorphism follows from the equality
() (I¥) = {z € I* | Vi 3k; such that wiie =0} =Tp (%)

Let J* be an injective resolution of T'/K 4s. In order to show the claim consider the following isomor-
phisms
S @p HE(C[NA®)) ~ S @p HE (T/K 45)
~ S®r HTp(J*)
~ H*(S @7 T (J*%))
~ H*T' /(S @1 J®)
~ HY(S/J )

where the third isomorphism follows from the fact that S is a flat T-module and the fifth isomorphism
follows from the fact that S ®r J* is a T-injective resolution of S/Jys ~ S @1 T/K 4s. O

5.8 Local cohomology of semi-group rings

In this subsection we compute local cohomology groups of some special semigroup rings associated with
the semigroups INAS. These local cohomology groups turned up in Lemma [5.24] We will use their
vanishing in Subsection (specifically in Corollary to prove I'-acyclicity of a Koszul complex.

We show that these local cohomology groups can be expressed as the cohomology of the Ishida complex
of C[INA®] (cf. Proposition [5.25)). Since A® is a (d + 2) x (2n + 2) integer matrix the Ishida complex
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carries a natural Z%t2-grading. The vanishing of certain graded pieces of the Ishida complex resp. of
its cohomology depends on the position of the degree as seen as an element in R%*2 in relation with the
cone spanned by the columns of A*(cf. Lemma and Proposition [5.30)).

Let F be the face lattice of R>0A® and denote by F, the sublattice of faces which lie in the face o
spanned by ag,...,a). For a face o of R>¢A® consider the multiplicatvely closed set

Uy, ={y¢|ce N(A°Nno)}

and denote by C[INA?®], = C[INA® + Z(A® N o)] the localization with respect to U,. We put

ri= @ ewa,

TE€Fy
dim 7=k

and define maps f* : L* — LE*! by specifying their components

ifr' ¢ r

k s s
. C[INA®]., — C[NA®], tob
[ ] | ] °ne {E(T’,T)nat iftr'cr

T/ T

where € is a suitable incidence function on F, and nat is the natural localization morphism. The Ishida
complex with respect to the face o is

L2:0— L0 - L) —» ... LI =0

The Ishida complex with respect to the face o can be used to calculate local cohomology groups of
C[INA®].

Proposition 5.25. As above, denote by I C C[INA®] the ideal generated by the elements ® 4- (w;) = y% .
Then for all k we have the isomorphism

HJ(CINA®]) ~ H" (L)

Proof. The proof can be easily adapted from [BH93, Theorem 6.2.5]. For the convenience of the reader
we sketch it here together with the necessary modifications . In order to show the claim we have to prove
that the functors N — H*(LS ® N) form a universal -functor (see e.g. [Har77]). If we can additionally
show that

HY(C[NAY]) ~ HO(LY) (50)

the claim follows by [Har77, Corollary III.1.4]. Let F,(1) be the set of one-dimensional faces in F, and
notice that

HY,(C[NA®)) ~ ker | C[NA®] — @D C[NA®], | ~ HO(LS @1 M)
TEF,(1)

where I’ C C[INA®] is the ideal generated by {y% | R>a$ € F,(1)}. In order to show we have to
show that rad I’ = I since obviously HY,(C[NA®]) = H?, ,;,(C[INA®)). Since I’ C I and I =radl (I is
a prime ideal corresponding to the face spanned by af,...,a’), it is enough to check that a multiple of
every y< € I lies in I’. But this follows easily from the fact that the elements {a} | R>oa; € F,(1)} span
the same cone over Q as the elements {af,...,a’}.

The proof that N — H¥(LS @ N) is a -functor is completely parallel to the proof in [BH93]. O

Notice that the complex L® is Z92-graded since C[INA®] is Z92-graded. In order to analyze the coho-
mology of L% we look at its Z*2-graded parts. For this we have to determine when (C[INA®],), # 0
(and therefore (C[INA®],), ~ C) for x € Z4*2.

We are following [BH93, Chapter 6.3]. Denote by C4- the cone R>qA* C R¥+2. Let z,y € R¥2. We

say that y is visible from z if y # x and the line segment [z, y] does not contain a point ¢y’ € Cy4s with
y' #y. A subset S is visible from X if each v € S is visible from z.
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Recall that the cone C4s is given by the intersection of finitely many half-spaces
HY = {z e R | (n,,z) > 0} TeF(d+1)
where F(d 4 1) is the set of d + 1-dimensional faces (facets) of C4s. We set
¥ = {7 | (n,,z) =0}, T ={r| (n,,z) > 0}, = ={7| (ns,z) <0}
Lemma 5.26. [BH93, Lemma 6.5.2, 6.5.5]
1. A point y € Cys is visible from x € R¥2\ Cy- if and only if y° Nax™ # 0.

2. Let x € Z%%2 and let T be a face of Cas. The C-vector space (C[INA®),), is non-zero if and only
if T is not visible from x.

Recall that the facet o € F(d+1) is spanned by af, ...,a?. It is the unique maximal element in the face

» =Nt

lattice F, C F. Denote by H, its supporting hyperplane (i.e. 0 = C4s N H, ) which is given by
H, = {z € R? | (ny,z) = 0}

where n, = (0,1,0,...,0). Let 7 € F, be a k-dimensional face contained in ¢ and set I, := {i | af € 7}.
Notice that the vectors {a? | i € I} span the face 7. This face 7 gives rise to two other faces, namely
its ”shadow” 7° which is spanned by the vectors {b; | a € 7} and the unique k + 1-dimensional face
7¢ which contains both 7 and 7°. Let {m1,...,7m} = F»(d) be the faces of dimension d contained in o,
which give rise to the facets 77,...,75,.

Example 5.27. Consider the matrix

1 1 1 0 O 0
As=1(0 O 0 1 1 1
01 -1 0 1 -1

where the face o is generated by (1,0,0), (1,0, 1), (1,0, —1) and its shadow o° is generated by (0,1,0),(0,1,1), (0,1, —1).
The facet 7€ is generated by T and its shadow 7°.

First notice that by Lemma 1 the facet o is visible from a point x € R?*2 if and only if (n,,z) < 0.
If (ny,z) > 0 holds, it follows from Lemma 1. that a face 7; C o is visible from z if and only if the
facet 77 is visible from =, i.e. (n,e,z) <O0.

We define
S = 74+2 n (R(ag, - --»ap) + Rso(by,---,05)),

this is the set of Z4*+2-degrees occurring in C[INA®],. Notice also that we have
H, =R(af,...,a) and HS =R(af,...,as)+ Rxo(bf,...,b)).

Given a point z € S with (ny,z) > 0 we will construct a point y, € Z%*? which lies in H, such that
7; is visible from z if and only if it is visible from y, for all i = 1,...,m. Denote by z, the projection
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of x to the sub-vector space generated by by, ..., b;,. Since the semi-group generated by these vectors is
saturated, we can express z, as a linear combination with positive integers

i

n
2y = ZTIQ‘E with rf € N
i=0

Since we have 0 = (n,e,a; — b7) = (nse, (1,-1,0,...,0)) for any a?,b; € 77 the first two components of
the vector n.c are equal. Hence, if we set

n n
vei=a+ ) riai =) ril;
i=0 ‘

we easily see that

(Nre, ) = (Nre, Yo ) for i=1,...,m. (51)

It follows that 7; is visible from any point = € S if and only if it is visible from y,, as required. Let us
remark that the vectors x and y, differ only in the first two components, because the same is true for
the pair of vectors (af,b;) for all i € {0,...,n}.

Lemma 5.28. In the above situation, let x € S. Then y, € SN H, and we have
(L3)z = (L3)y.

Proof. For the first point, notice that the vector x — z, is precisely the projection of z to H,. On the

other hand, we have y, =z — 2z, + >, n¥af, and > (n¥a’ is an element of H, anyhow.

The second statement is an easy consequence of Lemma 2. More precisely, Equation shows
that the visibility of some facet 7 is the same from « and from y,. Moreover, o is not visible from both
x and y, (i.e., (ny,x) >0, (ny,y-) > 0), hence, also the visibility of 7; is the same from z and from y,.
We conclude that any localization C[INA®],. (for any face T C o) vanishes in degree z if and only if it
vanishes in degree y,. This yields the desired equality (L2 ), = (L2)y, - O

We are now able to compute the cohomology of the Ishida complex with respect to the face o. Set
H_. ::{xeRd+2|<an,x><O} fori=1,...,m
and define

S™=2"nHfn()H.

i=1
Notice that S = Z*2 N H}, hence we have a natural inclusion S~ C S.

Example 5.29. We consider again the matrix

1 1 1 0 O 0
As=1(0 O 0 1 1 1
01 -1 0 1 -1

and take the point x = (—1,1,1). Its projection to R(bg, - ..,b;) is (0,1,1), hence we get

Yo =z + (1,0,1) — (0,1,1) = (0,0,1) € H°.
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Proposition 5.30. Let A® as above. Take any x € 72 and denote by LS the Ishida complex with
respect to the face o generated by ag,as,...,a;

1. Ifx ¢ S, then (L), = 0.
2. Ifx € S\ S™, then H{(LS), =0 for all i
3. Ifx € S™, then H(LS), =0 fori#d+1 and H¥ (L), ~ C.

Proof. The first point follows from the fact that we have (C[INA*],), = 0 for ¢ S, hence (L%), = 0
for all i. For the proof of the second and third point, it is sufficient to consider the case where z € H,:
Namely, in both cases we have x € S so that Lemma apply. We can thus replace = by y,, i.e.,
(L3)z = (L), Moreover, z € S~ if and only if y, € S~ N H, by formula (51). Hence we will suppose
in the remainder of this proof that x € SN H,.

We will reduce statements 2. and 3. for z € SN H, to the computation of the local cohomology of
a semi-group ring with respect to a maximal ideal via the Ishida complex as done in [BH93, Theorem
6.3.4]. For this, we will use the matrix A= (ag, @y, --,ay,), which can be seen as the matrix of the first
n + 1 columns of A% with the second row deleted. The semigroup NA (resp. the cone C';) embeds into
INA® (resp. into C4-) via the map a; — af, and these embeddings are compatible with the embeddings
Rt < R"™2 (vesp. Z" ! — Z"2) given by

(:Ela 3,24 ... ,$d+2) — (:Ela 03 T3, X4, 7:17d+2)-
The following equality of semi-groups holds true:
STNH,=27Z""Nnnt (-Cy), (52)

where both intersections are taken in Z+2. To show this, notice that Ci=Rxo(ap, ..., a;) N H,, that
7{ N H, = 7; and hence

(H7 0 H, ) =Int(-C)

-

s
Il
-

Consider the projection map

p: RIT2 — RAF!

($17x27$37 e 7xd+2) — (x17m37 e 7:Cd+2)
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which forgets the second component, then for all 7 C o and all elements € SN H, we have that

(CINA],), ~ (CINA) )

p(z)

Under this isomorphism the Z*?-graded part (L), of the Ishida complex with respect to the face o
goes over to the Z™!-graded part (L*®),(,) of the Ishida complex considered in [BH93] (i.e., the Ishida

complex of the semi-group C[INA] with respect to the maximal ideal generated by (wo,...,w,)). Using
formula , the proposition follows now from Theorem 6.3.4 in loc.cit.
O

We finish this subsection by the following easy consequence, which will be crucial in the proof of the
main result (Theorem below).

Corollary 5.31. In the above situation, we have H'(L%) = 0 for all i # d + 1, H™(L%), = 0 for all
r € ZU2\ S~ and degy (HYTY(LL),) < 0 for x € S~, where degy(—) refers to the Z-grading of H*(LS)
corresponding to the first row of A®.

In other words, the cohomology groups of the Ishida complex (with respect to the face o) are concentrated
in negative degrees.

Proof. The first two statements are precisely those from Proposition [5.30] points 1. and 2. In order to
show the third one, notice that for any x € S, we have degy () < degy(y,) (this follows from the very
definition of the vector y,). Now let x € S, and suppose that H9T!(L2), # 0. From Lemma we
deduce that

HTNLY)o = HTT(LY)

Yo

and as already remarked above, y,, € S~ N H, because x € S~. However, we deduce from formula
that degy,(y.) < 0 if y, € S~ N H,, so that we obtain degy,(H*1(L%),) < 0, as required. O

5.9 Statement and proof of the main theorem

In this subsection we finally finish the computation of the direct image mo4.4". The I'-cyclicity of .7/ _#
(cf. which follows directly from the results of the previous two subsections enables us to compute
the global sections of 7oy .4 as the cohomology of a Koszul complex (cf. Proposition |5.33)). Finally we
are able to compute the Hodge filtration on the GKZ-system in Theorem [5.35

Corollary 5.32. The .“-modules # | ¢ are I'-acyclic.

Proof. If we consider the degree zero part of formula , then it suffices to show that the Z-graded
local cohomology S-modules H *w)(S/ Ja,) are concentrated in negative degrees. By Proposition @l
and Lemma [5.24] these local cohomology groups are calculate by the Ishida complex LY, i.e., we have
isomorphisms

H{\y(S/Ja,) ~ S @p Hf (C[NA®)) ~ S @ H*(L).

The cohomology groups H*(L2) are concentrated in negative degrees by Corollary (and tensoring
with S does not change the Z-degree which is counted with respect to the degree of the variables
wo, . . ., Wy, ). Hence the result follows. O]

Proposition 5.33. There is the following isomorphism in D*(%y):
Imor N = D(Kos*(2745) ¢, (E — Br)k=o.....a)
Proof. By formula 7 Proposition and Proposition we have the isomorphisms

Irgy N =~ FRTFQ*(Q.;_HW/V ® AN)

X

~ RTRm2. (57 1 @A)

X

~ RT(Q%, 1y @A)

X

~ RI(£*) (53)
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Using the last isomorphism in and Corollary we get
RT(Z*) ~ RT(Kos* (2747 #,(E)k=o...q)) ~ T(Kos* (2747 ] 7 ,(E)k=o.....d))

Denote by R+ the ring
R"j/ = C[z, )\0, ey )\n]<za,\0, ceey Za)\n> 5

let J % C Ry be the left ideal generated by
0 = [J o) = [[(z0s)7"  for lely
;>0 1;<0

and let I3 C Ry be the left ideal generated by J% and the operators

Ey. — Br 3:Zaki)\iza)\i — Bk for k=1,...,d

i=1
By —Bo =Y Xiz0x, — Bo
i=0
Lemma 5.34. There is the following isomorphism of Ry -modules
P HO (mo N) = HO(Pmpy o N) ~ 27 Ry /15
Proof. The first isomorphism follows from Lemma [5.16] The second isomorphism follows from Proposi-
tion [5.33] the isomorphism
I(S) 7)~Ry/];
and the isomorphism
2Ry /1% ~ H (Kos' (z_dR«;/ JIA (B — ﬁk)kzo,,,.’d))

O

We are now able to prove the main theorem of this paper. Let A be the (d4+1) x (n+ 1) integer matrix

1 1 1
~ 0 aiq QA1p
A =

0 aq1 Qdn

given by a matrix A = (a;3,) such that ZA = Z4*! and such that NA = Z4+! N R A.
Theorem 5.35. Let A be an integer matriz as above, E € Ay and By € (—1,0]. The GKZ-system

M2 carries the structure of a mized Hodge module whose Hodge filtration is given by the shifted order
filtration, i.e.

(M, P = (ML F2TY).
Proof. Recall from Proposition [5.4] that we have the isomorphism
IME = 42, (7 © B3P € MEM(V).
The underlying Dy -module of this mixed Hodge module is
HH (po (4707 ®o F1 (31067 71) = HO(mar N).

We have already computed the Hodge filtration of A/ (more precisely, we have computed it on the
restrictions A, of N to each chart W, x V in Proposition [5.11). In order to compute the Hodge
filtration under the direct image of 7o, we will use the results obtained above and read off the Hodge

filtration from the corresponding %y -module 7 (M%, FH). We have the following isomorphisms

L7 (ML F1) 2 T7(H (moy N, F)) = TH (mys V) = 2Ry [T}

Using these isomorphisms the claim follows easily. O
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5.10 Duality

For applications like the one presented in the next section, it will be useful to extend the computation
of the Hodge filtration on M% to the dual Hodge module ]D)./\/l%. This is possible under the assumption
made in the above main theorem (Theorem [5.35)) plus the extra requirement that the semi-group ring

C[INA4] is Gorenstein. More precisely, it follows from [Wal07], that under these assumptions, the Dy -

module DM~ is still a GKZ-system. Hence it is reasonable to expect that its Hodge filtration will also
be the order%ltration up to a suitable shift.
The Gorenstein condition for normal semi-group rings has a well-known combinatorial expression (see

[BH93, Corollary 6.3.8]), namely, C[INA] is Gorenstein if and only if there is a vector ¢ such that the set
of interior points int(INA) (i.e., the intersection of int (R>oA) N Z*! is given by ¢+ INA.

Theorem 5.36. Suppose that A € M(d+ 1 x n+ 1,7) is such that ZA = 73+, NA = 74+ n Rzog
and such that int(NA) = ¢+ INA for some ¢ = (co,c) € Z4T and B € A4. Then we have

B o A-B-E
DM 3= M i
and the Hodge filtration on ]D)./\/l% is the order filtration, shifted by n + cg, i.e., we have

H B pord —-p-¢
F, DMZ ~ Fz?fnfcoMg .
Proof. The proof is very much parallel to [RS15] Proposition 2.19] resp. [RS17, Theorem 5.4], we
will give the main ideas here once again for the convenience of the reader. We again work with the
modules of global sections, and write Dy := C[Ag,...,Ay](Ox,,---,0x,) and S7 for the commutative
ring C[Ox,, - - -, 0x,]/(01)ieL; These rings are Z4+!-graded by deg(\;) = —a;, deg(dy,) = @;.
In order to calculate DM g together with its Hodge filtration, we need to find a strictly filtered free

resolution (L, Fs) 5 (ME,F,H) = (Mg, F?'4). We have already used in the previous sections of this
paper resolutions of “Koszul”-type for various (filtered) D-modules. Here we consider the Euler-Koszul
complex

K*® :=XKos (Dv ®cja,] S5, (Er — Br)r=0.....d) »

as defined in section and a generalization to Z4!-graded C[9,]-modules (for details see [MMWO05]).
A free resolution of M g is constructed as follows: Take a C[0]-free graded resolution of T°* — Sy,
and define L*® to be the total complex Tot (K‘ (F —B,Dy EN T')). Notice that the double complex
K*(E — B, Dy ®cjp,) 1) exists since K*(E — 8, Dy ®c[g) —) is a functor from the category of /A
graded C[9]-modules to the category of (bounded complexes of ) Z?*!-graded Dy-modules. Then we have
L% =0 for all k > n+ 1 (notice that the length of the Euler-Koszul complexes is d + 1, and the length
of the resolution Ty — P is n—d+ 1, hence the total complex has length (d+1)+(n—d+1)—1=n+1).
Moreover, the last term L~"~! of this complex is simply equal to Dy (and so is the first one LP).

As we have int(]Ng) = ¢+ INA, the ring C[]Ng} ~ Sy is Gorenstein, more precisely, we have wg, ~
S5(¢), where ws . is the canonical module of S3. Then a spectral sequence argument (see also [Wal07,
Proposition 4.1]), using

0 ifi<n—d

Extegy) (S5, welar) = { S:(@ ifi=n—d

shows that

B~ ay—B—C
DM = M

In order to calculate the Hodge filtration on Mig, we remark that the Euler-Koszul complex is naturally
filtered by putting

F,K™' = @ ;ﬂi_l (Dv ®cja] S3) €iy...ir-

0<i <...<i; <l
Notice that Dy ®¢jg) Sz =~ Dv/(Oi)iew;, so that this Dy-module has an order filtration induced from
ForiDy. In order to show that (K°®, F,) —» (Mg,FH) is a filtered quasi-isomorphism, it suffices (by
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Lemma to show that Grl K* — Ger Mf; is a quasi-isomorphism. This follows from [SSTQ0,

Formula 4.32, Lemma 4.3.7], as C[]NE] is Cohen-Macaulay due to the normality assumption on A. The
final step is to endow the free resolution L® = Tot (K‘ (E —B,Dy ®cla,] T‘)) with a strict filtration F,
and to show that (L, Fy) — (Mg, FH). As the resolution T, — Sy is taken in the category of Z4*!-
graded C[d]-modules, the morphisms of this resolution are homogenous for the (Z-)grading deg();) = —1
and deg(9y,) = 1 (notice that this is the grading given by the first component of the Z4*+!-grading of the
ring Dy ®¢[g)S3) - Hence these morphisms are naturally filtered for the order filtration Fori(Dy ®cia1S7)
and they are even strict: for a map given by homogenous operators from C[J] taking the symbols has

simply no effect, so that GrZ (Dy ®cia) Te) — Grl o (Dv ®¢jg) S7) is a filtered quasi-isomorphism (and
similarly for the sums occuring in the terms K ~'). However, we have to determine the Z-degree (for the
grading deg(,) = 1) of the highest (actually, the only nonzero) cohomology module E:z:tg_@]d(S T wepa)):
it is the first component of the difference of the degree of w¢|g] (i-e, the first component of the sum of the
columns of A), which is n + 1, and the first component of the degree of ws ;, which is ¢p. Now the shift
of the filtration between Mé and the dual module Miﬁ_(co’c) is the sum of the length of the complex
K*(E — 3, Dy ®c[g) S7), i-., d+ 1, and the above Z-degree of Extgfg‘]i(Sg, weig))s i-e. n+1—co. Hence
the filtration F, L~"! is again the shifted order filtration, more precisely, we have

—n—1 ord ord
FPL = Fp+d7(d+1)7(n+17c0)DV = Fp7n72+co DV :
Now it follows from [Sai94, page 55] that
D(M%, FH) = Homp, ((L*, F\), (Dy ® Q)Y Fu_s(ui1) Dy @ (1))
so that we finally obtain

H E __ pord —E—(C ,c)
FIDME = Fgrd, M7,

—n—Co

O

We now consider the special case § = 0. From Proposition [5.2] we know that up to multiplication by a
non-zero constant, we have the morphism

¢ Fgrd M9 =Fh L DMY) = FID(MS)(—n — d) — FI MY = Fgd M
P P9l

where 9(¢0©) .= [, 8’/\“2 for any k = (ko, ..., ky) with A -k = (o, ¢). Since A is homogencous we have
> k; = co. As a consequence, we obtain the following result.

Corollary 5.37. Under the above assumptions on g, the morphism

(M Frd ) — (MY, Ferd)

®—Co
P —s P.oloo)
(where 9°0:°) is as above) is strictly filtered.

Proof. Since both filtered modules (ME(CO’C), Ford ) and (M%, F2rd) underly mixed Hodge modules on V/

e—Co
by Theorem and the morphism is induced from a morphism in MHM(V, C), we obtain the strictness
statement we are looking for. O

Remark 5.38. If C[INA] is not Gorenstein but normal (and therefore Cohen-Macaulay) then the proof
of Theorem shows that

DM% ~H° (E + B, Dy @ Ext" (S 1,wcpp,))) ~ H° (E+ B, Dy @ ws ;)

Recall that the canonical module ws . of S3 is isomorphic to C[int(]N/T)] in the category of Z3* ' -graded
C[0,]-modules. The module ws; carries a Z-grading given by the first component of the 7+ _grading.
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Hence Dy Qg ws; carries an order filtration which induces a filtration F2™¢ on H(E+ B, Dy ®wsg).
We therefore get

—Mn—Co

FADMP ~ Ford_ H(E + B, Dy ®ws,).

where ¢y := min{degz(P) | P € Clint(NA)]}. Let ¢ € deg(C[int(NA)] with ¢ = (co,c). Sim-
ilar to [Wal07, Proposition 4.4] it can be shown that the inclusion Sz[—c] — Clint(INA)] induces
an isomorphism M—F-E =, HY(E + B, Dy ® ws,) however we do not expect (M_E_E, Fordy —
(HY(E + B, Dy ® wsA,),F,‘”'d) to be a filtered isomorphism.

5.11 Hodge structures on affine hypersurfaces of tori

In this subsection we explain how our main result implies in a rather direct way a classical theorem of
Batyrev concerning the description of the Hodge filtration of the relative cohomology of smooth affine
hypersurfaces in algebraic tori.

We first want to recall the sheaf theoretic definition of relative cohomology. Let X be a topological space
and K be a closed subset. Denote by j : X \ K — X the open embedding of the complement. The
relative cohomology of the pair (X, K) is defined as the following hypercohomology:

H'(X,K;C) :=H'(X,jij'Qx)

If X and K are quasi-projective varieties the relative cohomology of the pair (X, K) carries a mixed
Hodge structure, which is given by H*(X, jii ~1Q).

We want to compute this in the following situation: Consider as in section [5] the family of Laurent
polynomials ¢4 : T x A — V = Cy, x A, where ZA = Z%*! and NA = Z*! N RspA. Let A =
Conv(ag,ay,---,a,) be the convex hull of the exponents of ¢4, where gy := 0. Let 7 C A be a face of
A,z €V and

Fi,= Y zith

i1a; €T
Definition 5.39. The fiber gazl(m) is non-degenerate if for every face T of A the equations
oF} , oF} ,

T

Ae = 5 oty

have no common solution in T.

Let x € V such that the fiber ¢, (2) is non-degenerate. We give a model of H'(T,p,'(z);C) as the
quotient of a graded semi-group ring and compute explicitly its Hodge filtration. This recovers a result
of Stienstra [Sti98, Theorem 7] using results of Batyrev [Bat93].

Lemma 5.40. Let x € V and i, : {x} — V be the inclusion. Suppose p,*(x) is non-degenerate. Then
1. the fiber ' () is smooth.
2. the map i, is noncharacteristic with respect to M%.

Proof. The first statement follows directly from the definition for 7 = A. The second statement follows
from [Ado94, Lemma 3.3]. O

Consider the following diagram (cf. diagram (34)))

Y U

j [

TxV —2 L PW)xV — 23y

T ”T 7

r Z
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where Y resp. I' are the pull-backs such that both squares on the left are cartesian. Notice that I' is
given as a subspace of T'x V by the equation Ao + > ; A;t% = 0; hence, I is the graph of ¢4 and Y is
its complement in 7' x V. Restricting this diagram to some z € V' we therefore get

T\¢lw) —L— U, )
| [
T —2 S PW) — =3 {a} (54)
ZT ) z]\ -

We will need the following statement
Lemma 5.41. Letx € V be such that p ;' () is smooth then we have an isomorphism in D®(MHM(IP(W))):

— 7._1 —
gdvd Q> 57 Q)
Proof. The statement follows using the following chain of isomorphisms

= =1 ! Lo L =1 o
gdid  QF ~ §ii e QF ~ 515 QF ~ 519, Q1w

where the second isomorphism follows from base change. It remains to show the first isomorphism.
Notice that we have the following to triangles

P | Coex —+1
NI TGy —> Gx —> UL Gk —
= —=—1 ==k +1
g«J1J T Gx — gxlit —
So it is enough to show i1i* g, QY ~ gﬂ;%*@?. But this can be seen as follows:
i!i*g*Q¥ = i!i!g*Q;{ 2] ~ Z'g*?Qg[ﬂ = Z!f]*%*Qg . Q*E‘E*Qg
where we use the smoothness of ¢ ~1(x) in the first and third isomorphism. O

In order to proof the statement that the restriction of the GKZ-system is isomorphic to a relative
cohomology group, we have to rewrite the GKZ-system as a Radon transform. For this, consider the
following diagram

T\ () — s U, — s {2}
4] I

T —~ P(W)
where all squares are cartesian.

Proposition 5.42. Let x € V be such that @El(x) is non-degenerate, then there is an isomorphism of
mized Hodge structures:
is M% ~ HY(T, o' (z); C)

and H'(T,p ;' (z);C) = 0 for i # d.

Proof. Consider the following isomorphisms

sy 0.7 Ql = nli, () 0.7 base change
~ m) () 0iu,) 9" QY
~ m(nf oiv, ) 9."Qf (n{ oiv,) open
~ w0\g.(m) 0i.)PQf base change
~ 157, (1) 01y)"PQf (7 oi,) open

~ TG Q1 2
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We can rewrite this further by looking at a part of diagram :

T\ ¢ Yz) —L—— U, §

1 b

T PW) —" 3 {a}
We have
= =1 - _ - *
TGt 7 PQF = M1 G PQP\ g1 (a) = TGP QI o1 (o) = ot (77) 0.7 QY

where the last isomorphism follows from the calculation above. If we take cohomology and keep in mind
that i, is non-characteristic we get

@ - i— = =1
HY(T, 3" ();C) = H “(mpuguij  "QF)
~ H' iy (ng (] ) 9.7 QF)
~ i;%i_d—’_n—i_l(ﬂgg(ﬁij)*g*pQQI!)

~ iy HT T (R (9.7QF))

Since H*(*R2(9."QF )) = 0 for k # n+1 and H*(*R2 (9.7 QF)) = MY for k = n+1 the claim follows. [J

Denote by S; := C[INE} C (D[ugt, . ,ufit] the semigroup ring generated by uo, ... ul» where A=
(@g, - - -,4a,) is the matrix from
Define the following differential operators

D=3 (akiz&@ n u,@ui) for k=0,....d andfixed == (z0,...,2n) €V
1=0

which act on (D[ug[, cee u;[] and which preserve S 7. For ub = glodo . ylnan ¢ S 7 we define the degree
deg(ut) = 37" 1;. Define a descending filtration F'* of C-vector spaces on S; where F4™1S ¢ = 0 and
the filtration step Fd*kSg is spanned by monomials u! with deg(ul) < k.

Theorem 5.43. Let x € V such that gogl(x) is mon-degenerate, then the following isomorphism of
filtered vector spaces holds

-k 0 H —e
(izM5, Fe") ~ (Sz/(DkS3)k=0,....a, F~°)
Proof. Since we have assumed that i, is non-characteristic with respect to M% the only non-zero coho-
mology group of i;/\/l% is

Hoi;Mog =~ (A — Ti)i=o

,,,,,

We define a C-linear map

Sy — (N - xi)i:o,.“,n\/\/l%

lo-ao | Lo lnGn lo . . Aln
U ) »—>8)\0 B)W

We want to show that this map factors over S3/(DyS7)k—o.,....a S0 that ¥" descends to a map

.....

v Sg/(DkSg)k:07,,.,d — (/\i — Ii)i:07,,,,n\M%
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Let P = ylodo .

We will now construct an inverse © to W. If P
P ¢ S7 the element which is obtained from P

P= A’go...)\’; oL .
o : ()\z - l‘i)

We want to show that ©’ factors over (\; — z;);=

@ . (>\7, — xi)i:

We have to show that ©'(P- E;) =0and ©'(P-0,) =0for k=0,...

P is a monomial A\ ...

in 9l i
J 0 n .
Npdlo Lo

O (N .. NrO Oy E) = O (N ...

.. alr; the element P is given by xo .

e \Dv — S3/(DpS 3) k=

€ Dy is a normally ordered element, we denote by
by replacmg A; with xl and 0, Wlth i e, if

a;
b

whnylogo  ylnen This gives the map

.d

0,.

P—P

o,m,n\Mg so that ©" descends to a map
0, \M3 — S3/(DrS5)k=o0,..

d
P—P

,dand [ € I.. We can assume that

Xrofo o <Z akiAiaAi>)
=0

n
— A\ in [ ln
=0 ()\00 R )\fl"( E (a;“)\ a)\ + ag; 1))6 0 8>\n>
i=0
n
=) .. al( E (agiziu® + agl;))u loag | gyln-ao
i=0

n

= (O (amwu® + apls)) - o ol - wlo%
i=0
n

= ( E (arimiu® +u;y,)) -2l .. adn -yl oyl
i=0

=0

and
1/ do Fn alo I _ af(\jo Fn alo I L —1
[CHO YD VA 8/\0...3/\2Dl)f®()\0 CLAON O 9y, 9y, )
;>0 ;<0
= x%" ..xjn lorgy - gyln-an (H ubi i — H u_l"'“i>
1;>0 1; <0
— :Céo ) x%ngloﬂo . 'an'ﬂn (ME” soli'@; _ u” 2i<oli Qi)
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where the last equality follows from Z:-L:O l;a; = 0. This shows that ¥ is an isomorphism. The statement
about the Hodge filtration follows from Theorem the fact that z is a smooth point of ./\/l% and the
definition of the inverse image of filtered D-modules (cf. [Sai88|] chapter 3.5, notice that no shift in the
Hodge filtration occurs since we are dealing with left D-modules instead of right D-modules as in loc.
cit.). O

6 Landau-Ginzburg models and non-commutative Hodge struc-
tures

In this final section we will give a first application of our main result. It is concerned with Hodge-theoretic
properties of differential systems occurring in toric mirror symmetry. More precisely, we will prove [RS17,
Conjecture 6.15] showing that the so-called reduced quantum D-module of a nef (also called weak Fano)
complete intersection inside a smooth projective toric variety underlies a (variation of) non-commutative
Hodge structure(s). We will recall the necessary notation and results of loc.cit. and then deduce this
conjecture from our main Theorem [5.35] The basic strategy to obtain the proof of the conjecture is
to identify the reduced quantum D-module with an object which is the Fourier-Laplace transform of a
filtered D-module underlying a pure polarized Hodge module. The latter is nothing but the image of
the duality morphism from Corollary Notice that this corollary depends in an essential way on our
main Theorem [5.35] since the strictness of the duality morphism with respect to the order filtrations
holds only because the latter are (up to a shift) the Hodge filtrations of mixed Hodge modules. The
identification with the reduced quantum D-module relies on the explicit description of the latter from
[MMT17] (already used extensively in [RS17]).

Let X5, be a smooth, projective and toric variety with dime(Xs) = k. Put m := k+b3(Xs). Let £4,...,L;
be globally generated line bundles on Xy, (in particular, they are nef according to [Ful93| Section 3.4])
and assume that —Kx; — Zé:l c1(L;) is nef. Put £ := @!_,L;, and let €Y be the dual vector bundle.
Its total space V(EY) := Speco,_ (SymoxE (£)) is a quasi-projective toric variety with defining fan ¥'.
The matrix A € M((k+1) x (m +1),7Z) whose columns are the primitive integral generators of the rays
of ¥ then satisfies the conditions in Theorem m More precisely, we have ZA = 74+1 and it follows
from [RS17, Proposition 5.1] that the semi-group INA is normal and that we have int(INA) = ¢+ INA,
where &= S"7""! e, = (1+1,0,1), e; being the i’th standard vector in Z ™+,

i=m-+1 -7
The strictly filtered duality morphism ¢ from Corollary is more concretely given as

—(1+1,0,1 or or
1 (MG e ) — (MO, Fe)

P +— P-a,\()'a,\ 8,\

m+1 m+l

Proposition 6.1. The image of ¢ underlies a pure Hodge module of weight m + k + 21, where the Hodge
filtration is given by
Fllim(¢) = im(¢) N FYG M.

Proof. This is a consequence of [RS17, Theorem 2.16] and of Proposition O

A main point in the paper [RS17] is to consider the partial localized Fourier transformations of the GKZ-
systems M”. We recall the main construction and refer to [RS17, Section 3.1] for details (in particular
concerning the definition and properties of the Fourier-Laplace functor FL and its “localized” version
FL'*°). Let (as done already in section in A be the affine space C™*! with coordinates Ay, ..., Aty
(so that V' = C,, x A) and put V= C. x A. Let /T/l\ffo’m be the Dy-module Dyy[271]/Z, where T is
the left ideal generated by the operators ﬁL (for alll € Ly), Ej — Bz (for j=1,...,k+1) and E— Boz,
which are defined by

O = Tl (z0)%— II (z-0x)",
i:1; <0 i:1;>0

E = 220, + Y0 N0,

Ej = Z:i-il_l Aj4 Z/\ia)\i .
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We denote the corresponding Dy-module by M\Ef“’ﬁ). Then we have (see [RS17, Lemma 3.2])
FLZ/{)C (Mfgoxﬁ)> _ M\Efo-‘rl,ﬁ).

Consider the filtration on Dy for which z has degree —1, 9, has degree 2 and deg();) = 0, deg(dy,) =

Write MF*(Dy;) for the category of well-filtered Dy-modules (that is, Dy-modules equipped with a
filtration compatible with the filtration on Dy just described and such that the corresponding Rees
module is coherent over the corresponding Rees ring). Denote by G, the induced filtrations on the

module M\fo’ﬁ ), which are R¢, xa-modules. We have
GOM(fo’ﬂ) = Re.xn/Re.xa(@ier, + Re.xaE + Re.xa (B k=1, k11

and G}, M(BO B = 2k .Gy M (Bo.B) 1 general, the modules M (50 and their filtration steps may be quite
comphcated However, we have considered in [RS17] their restrlction to a specific Zariski open subset

A° C (A\ UmH w; = O}) C A (called W° in [RS17, Remark 3.8]), which contains the critical locus of
the familiy of Laurent polynomials associated with the matrix A (but excludes certain singularities at
infinity of this family). Denote by Oﬂfo’ﬁ) the restriction (/T/l\ffo’ﬁ))‘@zx Ao together with the induced
filtration G.Oﬂfo’ﬁ ). Then Gkoﬁ/l\ffo’ﬁ ) is Og. xae-locally free for all k. Moreover, the multiplication by

z is invertible on /T/l\ffo’ﬁ)7 filtered with respect to G, (shifting the filtration by one) and so is its inverse.
Hence, we have a strict morphism

z: (oﬂf[)ﬁ),G.) — (oﬂffo—lﬁ)vG._‘rl)'

We also need a slightly modified version of the Fourler—Laplace transformed GKZ-systems. More precisely,
define the modules °N’; # as the cyclic quotients of D¢, x ac[271] by the left ideal generated by DL forl € Ly

andE]—zﬁj for j =0,...,k + ¢, where

O = I1 A (z - 0)" I1 [I(Xi(z-0) —z-v)

i€{l,....m}: 1,>0 ie{m+1,...m+i}: I;>0v=1
- H Ail I1 A (207 I1 II (Ai(z-0i) —z-v).
=1 16{1 ,,,, m}: ;<0 ie{m+1,.... m+1}: ;<0Ov=1

Consider the invertible morphism
\I/ . oﬁj&o’gyg) — OM\E(ZZ»QA) (55)

given by right multiplication with 2 - H:-iféﬂ A; (recall that A\; # 0 on A°). We define (E to be the

composition 5 = a o U, where QAS is the morphism

3 M E0D o100

given by right multiplication with dy, ., ... 9x,,,,- In concrete terms, we have:
5: o -/V,E\O’Q’Q) SN oﬂfq—l&@ 7
x — ¢($ . Zl . )\m+1 et >\m+l) =T- (Z)\m+18m+1) Tt (Z)\m+lam+l).

We have an induced filtration G.oﬁf(lo,g,g) which satisfies
GoN Y = Re_ne /Re.xae (O)ieLs + Re.xas (Bj — 28;)j—0,....m+1

and Gko'/\/zgovgvg) — Zk . GOOA?‘(AOQQ)
In order to obtain the lattices Go we need to extend the functor FLf{’C to the category of filtered D-
modules.
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Definition 6.2. Let (M, F,) € MF(Dy) = MF(Dg, xa). Define M[0; '] := Dy[d}] ®p, M and

consider the natural localization morphism loc : M — M[@;OI]. We define the saturation of Fe to be

FM[05)] =Y 03 loc (Fri jM) . (56)

j=0

and we denote by GoM the filtration induced from Fk./\/l[a/(ol] on M = FLY(M) € M, (Dy) =

Mp(De.xn). Notice that for (M, F,) = (M\Efo’ﬁ),Ff"d), the two definitions of Ge coincide: As we
have

FEram P P31 = im (05, €0, M- At} (05 05,00, -, 03,0 0,,,)) i MM
the filtration induced by Fkord./\/lffofl’ﬁ) [8;01] on M\ffo’ﬁ) is precisely Gk/(/l\(fo’ﬂ).

We denote by (FLY, Sat) the induced functor from the category MF(Dy) to the category MF? (D3) which
sends (M, F,) to (M\, G,).

From the above duality considerations, we deduce the following result.

Proposition 6.3. The morphism
7. 047(0,0,0 on4(=1,0,0
3OO _ op-00)
is strict with respect to the filtration G, in particular, we have

é (GOOJ\A/’X)’Q’Q)) _ GOOM\(;,Q,Q) N im(g)

Moreover, the object (im(%),G.) is obtained via the functor (FLf{’C,Sat) from (im(gi)),F.H = Ffjf,i_‘_l),
which underlies a pure Hodge module of weight m + k + 21 by Proposition [0.1].

Proof. The morphism ¥ is invertible, filtered (shifting the filtration by —I) and its inverse is also filtered.

Hence it is strict. Therefore the strictness of (E follows from the strictness of zq@ We will deduce it from
the strictness property of the morphism ¢ in Corollary
Notice that the morphism ¢ is obtained from ¢ by linear extension in 8;01. Recall that the morphism

—(+1,0,1 or or
¢ : (MK( )vFo d) — (M%v Fo+(l1+1)
was strict, hence equation yields the strictness of
ai (M\‘Z(legl)’ GO) — (M\Sé;l,gyg% G0+l)
Finally, as already noticed above, this yields the strictness of

b=00w: (WP G — (MY, G,),

O
The next corollary is now a direct consequence of [Sab08, Corollary 3.15].
Corollary 6.4. The free O¢, xro-module Go"/(/l\i;l’g’g) N zm(g) underlies a variation of pure polarized

non-commutative Hodge structures on A° (see [Sablll] for a detailed discussion of this notion,).

The main result in [RS17] concerns a mirror statement for several quantum D-modules which are as-
sociated with the toric variety Xy and the split vector bundle £. In particular, one can consider the
reduced quantum D-module QDM (Xs;, £) which is a vector bundle on C, x H°(Xs,C) x B, where
Br :={q € (C*)»() |0 < |g| < &} together with a flat connection

Vi QDM(Xs, £) = QDM(X5, €) @0, yoxg, crume 2 20 n0o(x0.0)x 5 (108({0} x H(Xs, €) x BY)) .

73



We refer to [MM17] for a detailed discussion of the definition of QDM(Xs;, &), a short version can be
found in |[RS17, Section 4.1]. Notice that in loc.cit., QDM(Xsx, £) is defined on some larger set, but in
mirror type statements only its restriction to H?(Xs, C) x C, x B is considered. In the sequel, we will
need to consider a Zariski open subset of KM° C (€*)"2(*) which contains BY. We recall the main
result from [MMI17], which gives a GKZ-type description of QDM(Xs,E). We present it in a slightly
different form, taking into account [RSI7, Proposition 6.9]. Let R¢, xxao be the sheaf of Rees rings on
C, x KM°, and R¢_xxmo its module of global sections. If we write ¢,...,¢g, for the coordinates on
(C*)" (with r := by(Xx), then R, xxao0) is generated by 2¢;0,, and 229, over Og¢. xxme-

Theorem 6.5. For any L € Pic(Xy), write L e Re, xicme for the associated “quantized operator” as
defined in [MM17, Notation 4.2.] or [RS17, Theorem 6.7]. Define the left ideal J of R, xxme by

J := Re,_ xxme (Qu)ieL,,, + Re, xxame E,

where

Q = I1 liﬁl (731 - yz) 11 lﬁl (ZJ + 1/2:)

i€{1,...,m}:l;>0 v=0 Je{1,...,c}ilpmq; >0 v=1

—1;—1 —lmt+1 ,

— - I1 I1 (ﬁi—l/z) I1 I1 (£j+yz),

i€{l,...,m}:l;<0 v=0 J€{1,...,c}ilmy; <0 v=1
E = 2’262 - Kw(gv) .

Here we write D; € Pic(Xy) for a line bundle associated with the torus invariant divisor D;, where
1=1,...,m. Let K C Rg_ xxme be the ideal

k c
K= PeRexme |IpeZkeN:[[[[(L+p+iPes
i=0j=1

and K the associated sheaf of ideals in Re, xxmo -
Suppose as above that the bundle —Kx,, — Z;Zl L; is nef, and moreover that each individual bundle

L; is ample. Then there is a map Mir : B} — H%(Xs,C) x Bf such that we have an isomorphism of
Re. x B -modules

(Ro.xxme /K)o xp: — (ido. xMir)” QDM(Xy;, €).

In order to relate the quantum D-module QDM(Xy, £) with our results on GKZ-systems, we will use
the restriction map p: KM® < A as constructed in [RS17] (discussion before Definition 6.3. in loc.cit.).
Then it follows from the results of loc.cit., Proposition 6.10, that we have an isomorphism of Re, xkae-
modules

Ro. e /K 2 (ide, xp)" (@ (GoN{22))
Now we can deduce from Corollary the main result of this section.

Theorem 6.6. Consider the above situation of a k-dimensional toric variety Xy, globally generated
line bundles L1,...,L; such that —Kx,, — &£ 1is nef, where £ = @ézlﬁj, with L; ample for j =1,...,1.
Then the smooth R xxame-module (idg, xMir)*QDM(Xy, &) (i.e., the vector bundle over C, x KM®°
together with its connection operator V) underlies a variation of pure polarized non-commutative Hodge
structures.

Proof. The strictness of ¢ as shown in Proposition shows that Go./(/l\;_l’g’g) ﬂim(%) =¢ (GON(OvQ’Q))a

hence, by Corollary the module 5 (GON (0’9’9)) underlies a variation of pure polarized non-commutative
Hodge structures on A°. Hence the assertion follows from the mirror statement of Theorem [6.5 O
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