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tWe study tt
∗-geometry on the 
lassifying spa
e for regular singular TERP-stru
tures,e.g., Fourier-Lapla
e transformations of Brieskorn latti
es of isolated hypersurfa
e singu-larities. We show that (a part of) this 
lassifying spa
e 
an be 
anoni
ally equipped witha hermitian stru
ture. We derive an estimate for the holomorphi
 se
tional 
urvature ofthis hermitian metri
, whi
h is the analogue of a similar result for 
lassifying spa
es ofpure polarized Hodge stru
tures.

1 Introdu
tionIn this paper, we study a generalization of variations of Hodge stru
tures and the asso
iatedperiod maps. These generalizations are 
alled TERP-stru
tures; they �rst appeared under thename topologi
al-antitopologi
al fusion (also 
alled tt∗-geometry) in [CV91, CV93, Dub93℄ andwere rigourously de�ned and studied in [Her03℄ and [HS07℄.An important situation where TERP-stru
tures naturally o

ur, is the theory of (µ-
onstantfamilies) of isolated hypersurfa
e singularities, and more spe
i�
ally, the Fourier-Lapla
e trans-formation of their Brieskorn latti
es. In this 
ase the TERP-stru
tures are regular singular.Irregular TERP-stru
tures arise by a similar though more general 
onstru
tion where the initialobje
t is a regular fun
tion on an a�ne variety. These fun
tions appear as mirror partners ofthe quantum 
ohomology algebra of smooth proje
tive varieties or more generally, orbifolds. Itis a 
hallenging problem to study the indu
ed TERP-stru
tures on the quantum 
ohomologyside, although progress seems to have been made very re
ently in this dire
tion ([Iri07℄). Let usnoti
e that TERP-stru
tures are intimately related to the theory of harmoni
 bundles, via theso 
alled twistor stru
tures, i.e. (families of) holomorphi
 bundles on P1. Any TERP-stru
turegives rise to a twistor whi
h is 
alled pure if it is a trivial bundle on P1 and pure polarized if anaturally de�ned hermitian metri
 on its spa
e of global se
tions is positive de�nite. This hasto be seen as a generalization of the notion of variations of (pure polarized) Hodge stru
tures.2000 Mathemati
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By a basi
 result of Simpson ([Sim97℄), variations of pure polarized twistor stru
tures are equiv-alent to harmoni
 bundles on the parameter spa
e. Given a variation of TERP-stru
tures on a
omplex manifold, one obtains a variation of pure polarized twistor stru
tures resp. a harmoni
bundle on an open subset of this manifold, whi
h is a union of 
onne
ted 
omponents of the
omplement of a real analyti
 subvariety. Noti
e also ([Sab08℄) that the TERP-stru
ture of atame fun
tion on an a�ne manifold is always pure polarized.The main topi
 of this paper are the 
lassifying spa
es that appear as targets of period maps ofvariations of regular singular TERP-stru
tures. In fa
t, these spa
es were already investigatedunder a di�erent name (as 
lassifying spa
es of Brieskorn latti
es) in [Her99℄. The main newpoint treated here is to show how tt∗-geometry arises on the 
lassifying spa
es and to prove theanalogue of a 
ru
ial result in 
lassi
al Hodge theory (see [S
h73℄, [GS69℄, [GS75℄ and [Del71℄):the negativity of the se
tional 
urvature of the Hodge metri
 in horizontal dire
tions. Similarlyto the situation in Hodge theory, we expe
t this result to be a 
ornerstone in the study of theabove mentioned period maps. We prove a few quite dire
t 
onsequen
es of our result at theend of this paper.Let us give a short overview on the 
ontent of this arti
le. In se
tion 2, we re
all the basi
 de�-nitions both of variations of TERP-stru
tures and of the 
lassifying spa
es for Brieskorn latti
esresp. regular singular TERP-stru
tures. In order to do that, we also re
all the 
onstru
tionof the polarized mixed Hodge stru
ture and its 
ohomologi
al invariants, the spe
tral numbersasso
iated to a regular singular TERP-stru
ture. In se
tion 3, we 
onstru
t a Kodaira-Spen
ermap from the tangent bundle of the 
lassifying spa
e to some auxiliary bundle whi
h gives alo
al trivialization of the tangent bundle needed later. In parti
ular, this indu
es a positivede�nite hermitian metri
 on the pure polarized part of the 
lassifying spa
e. We also 
onsiderthe subsheaf of the tangent bundle of the 
lassifying spa
e 
onsisting of horizontal dire
tions.Contrary to the 
ase of Hodge stru
tures, it is not lo
ally free in general. Finally, in se
tion 4the main result of the paper is stated and proved. The proof is 
onsiderably more 
ompli
atedthan in the 
ase of Hodge stru
tures as the 
lassifying spa
es of TERP-stru
tures/Brieskornlatti
es are not homogenous. We �nish the paper by dedu
ing from our main theorem a rigidityresult for variations of TERP-stru
tures on a�ne spa
es.Notations: For a 
omplex manifold X, we write E ∈ VBX for a lo
ally free sheaf of OX -modules E , the asso
iated ve
tor bundle is denoted by E. If E 
omes equipped with a �at
onne
tion, we denote by E∇ the 
orresponding lo
al system.2 Classifying spa
esIn this se
tion we introdu
e the 
lassifying spa
es of regular singular TERP-stru
tures whi
hwere 
onsidered, under a di�erent name, in [Her99℄. We start by re
alling very brie�y thebasi
 de�nition of a TERP-stru
ture and some of its asso
iated data. After this, we give thede�nition of the 
lassifying spa
es.For the following basi
 de�nition we also refer to [Her03℄ and [HS07℄.De�nition 2.1. Let X be a 
omplex manifold and w an integer. A variation of TERP-stru
tures on X of weight w 
onsists of a holomorphi
 ve
tor bundle H on C × X, an in-tegrable 
onne
tion ∇ : H → H ⊗ Ω1
C×X(∗{0} × X), a �at real subbundle H ′

R
of maximal2



rank of the restri
tion H ′ := H|C∗×X and a �at non-degenerate (−1)w-symmetri
 pairing
P : H′ ⊗ j∗H′ → OC∗×X, where j(z, t) := (−z, t), subje
t to the following 
onditions:1. ∇ has a pole of type one (also 
alled of Poin
aré rank one) along {0}×X, i.e., the sheaf

H is stable under z2∇z and z∇T for any T ∈ p−1TX , where p : C× X ։ X.2. P takes values in iwR on H ′
R3. P extends as a non-degenerate pairing P : H⊗ j∗H → zwOC×X , in parti
ular, it indu
esa non-degenerate symmetri
 pairing [z−wP ] : H/zH⊗H/zH → OX .

(H, H ′
R
,∇, P, w) is 
alled regular singular, if (H,∇) is regular singular along {0} × X, i.e, ifse
tions of H have moderate growth along {0} × X 
ompared to �at se
tions of H′.The 
ase X = {pt} is referred to as a single TERP-stru
ture. There is a 
anoni
ally asso
iatedset of data, whi
h we 
all �topologi
al�.De�nition 2.2. Let (H, H ′

R
,∇, P, w) be a TERP-stru
ture, then we put

H∞ := {�at multivalued se
tions of H′}.We let H∞
R

be the subspa
e of real �at multivalued se
tions, then H∞
R


omes equipped with themonodromy endomorphism M ∈ Aut(H∞
R

), whi
h de
omposes as M = Ms ·Mu into semi-simpleand unipotent part. Let H∞ := ⊕H∞
λ be the de
omposition into generalized eigenspa
es withrespe
t to M .We restri
t here to the 
ase where all eigenvalues have absolute value 1, as this is automati
allythe 
ase for mixed TERP-stru
tures, as de�ned in de�nition 2.4. We put H∞

6=1 := ⊕λ6=1H
∞
λ , sothat H∞ = H∞

1 ⊕ H∞
6=1, and let N := log(Mu) be the nilpotent part of M .

P indu
es a polarizing form S on H∞ de�ned as follows: First note that P 
orresponds (after a
ounter-
lo
kwise shift in the se
ond argument) to a pairing L on the lo
al system (H ′)∇, thengiven A, B ∈ H∞, we put S(A, B) := (−1)(2πi)wL(A, t(B)) where
t(B) =





(M − Id)−1(B) ∀B ∈ H∞
6=1

−(
∑
k≥1

1
k!

Nk−1)−1(B) ∀B ∈ H∞
1 .

S is nondegenerate, monodromy invariant, (−1)w-symmetri
 on H∞
1 , (−1)w−1-symmetri
 on

H∞
6=1, and it takes real values on H∞

R
[Her03, Lemma 7.6℄. We 
all the tuple (H∞, H∞

R
, M, S, w)the topologi
al data of (H, H ′

R
,∇, P, w).Note that by [HS07, lemma 5.1℄ the topologi
al data are equivalent to the data (H ′, H ′

R
,∇, P, w).Let us now suppose that (H, H ′

R
,∇, P, w) is regular singular. Then the following 
lassi
alobje
ts will play a key role in the sequel of this paper.De�nition 2.3. Let (H, H ′

R
,∇, P, w) be a regular singular TERP-stru
ture.3



1. De�ne for any α ∈ C, Cα := zαId− N
2πi H∞

e−2πiα ⊂ i∗(H′)0 to be the spa
e of elementaryse
tions of H ′ of order α. Let V α (resp. V >α) the free OC-module generated by elementaryse
tions of order at least (resp. stri
tly greater than) α, i.e. V α :=
∑

β≥α OCCβ and
V >α :=

∑
β>α OCCβ. The meromorphi
 bundle (i.e., lo
ally free OC[z−1]-module) V >−∞is de�ned as V >−∞ :=

⋃
α V α. Any V α and V >α is a latti
e inside V >−∞ and thede
reasing �ltration V • is 
alled Kashiwara-Malgrange-�ltration (or V-�ltration) of V >−∞.Noti
e that the obje
ts Cα, V α, V >α and V >−∞ only depend on the topologi
al data ofthe TERP-stru
ture, i.e. on (H ′, H ′

R
,∇, P, w), but not on the extension H of the ve
torbundle H ′ on C∗ to a ve
tor bundle on C.2. The regularity assumption on (H,∇) 
an be rephrased by saying that H ⊂ V >−∞. TheV��ltration indu
es a �ltration on H, whi
h is used to de�ne a de
reasing �ltration onthe spa
e H∞ in the following way. De�ne for any α ∈ (0, 1] + iR

F pH∞
e−2πiα := zp+1−w−α+ N

2πi Grα+w−1−p
V H,then F • is a de
reasing exhaustive �ltration on H∞. We will use a twisted versionof this �ltration, whi
h is obtained as F̃ • := G−1F •, where G :=

∑
α∈(0,1]+iR G(α) ∈Aut (H∞ = ⊕αH∞

e−2πiα

) is de�ned as follows (see [Her03, (7.47)℄):
G(α) :=

∑

k≥0

1

k!
Γ(k)(α)

(−N

2πi

)k

=: Γ

(
α · id − N

2πi

)
.Here Γ(k) is the k-th derivative of the gamma fun
tion. In parti
ular, G depends onlyon H ′ and indu
es the identity on GrW

• where W• is the weight �ltration of the nilpotentendomorphism N . Note that the restri
tion of W•(N) to H∞
1 is by de�nition 
enteredaround w, and the restri
tion to H∞

6=1 is 
entered around w − 1.
F̃ • is the Hodge �ltration of Steenbrink if the TERP-stru
ture is de�ned by an isolatedhypersurfa
e singularity.As a matter of notation, we also write F̃ •

H for the �ltration F̃ • on H∞ de�ned by H.3. The V -�ltration is also used to de�ne the spe
trum of a regular singular TERP-stru
ture
(H, H ′

R
,∇, P, w). Namely, let Sp(H,∇) =

∑
α∈C d(α) · α ∈ Z[C] where

d(α) := dimC

(
Grα

V H
Grα

V zH

)
= dimC Gr

⌊w−α⌋
F H∞

e−2πiα. (2.1)It is a tuple of µ 
omplex numbers α1 ≤ . . . ≤ αµ. By de�nition, d(α) 6= 0 only if e−2πiα isan eigenvalue of M . We have the symmetry property α1 + αµ = w. In most appli
ationsthe eigenvalues of M are roots of unity so that the spe
trum a
tually lies in Z[Q].The following notion is quoted from [HS07℄, where it is shown to 
orrespond to �nilpotentorbits� of TERP-stru
tures. 4



De�nition 2.4. A regular singular TERP-stru
ture (H, H ′
R
,∇, P, w) of weight w is 
alled mixedif the tuple

(H∞
6=1, (H

∞
6=1)R,−N, S, F̃ •) resp. (H∞

1 , (H∞
1 )R,−N, S, F̃ •)is a polarized mixed Hodge stru
ture of weight w − 1 resp. of weight w. We refer to [Her03℄ or[HS07℄ for the notion of a polarized mixed Hodge stru
ture (PMHS for short) used here. Thedata here are Ms-invariant. In [HS07, lemma 5.9℄ it is shown that any semi-simple automor-phism of a PMHS has eigenvalues in S1. This is 
ompatible with our assumptions in de�nition2.2. that Ms has all its eigenvalues in S1 and justi�es this assumption.Next we reformulate the de�nitions of the 
lassifying spa
es DBL resp. DPMHS for Brieskornlatti
es resp. PMHS from [Her99℄ in terms of regular singular TERP-stru
tures. We start witha PMHS of one single weight w with a semisimple automorphism. As we have seen, a mixedTERP-stru
ture de�nes a sum of PMHS's of di�erent weights on H∞

1 ⊕ H∞
6=1, so that later weneed a slight adjustment of this situation (this is done in de�nition 2.7).The next lemma gives an equivalen
e of 
onditions for a �ltration to indu
e a PMHS.Lemma 2.5. Let (H∞, H∞

R
, N, S, F •

0 ) be a PMHS of weight w and let Ms be a semisim-ple automorphism of it. Then the eigenvalues of Ms are elements of S1. Let W• be theweight �ltration 
entered at weight w whi
h is indu
ed by N . Let Pl be the primitive sub-spa
e Pl := ker(N l−w+1 : GrW
l → GrW

2w−l−2) of GrW
l (for l ≥ w) and let GC be the group

GC := Aut(H∞, N, S, Ms). The primitive subspa
e Pl de
omposes into the eigenspa
es of Ms,
Pl =

⊕
λ Pl,λ. Then for any Ms-invariant �ltration F • on H∞, the following 
onditions areequivalent.1. dim F pPl,λ = dim F p

0 Pl,λ, N(F p) ⊂ F p−1, F pN jPl = N jF p+jPl,
F p GrW

l =
⊕

j≥0 F pN jPl+2j, S(F p, F w+1−p) = 0.2. There exists an Ms-invariant 
ommon splitting Ĩp,q of F • and W• with the properties inlemma 2.3 (a)�(d) in [Her99℄.3. F • is the image of F •
0 by an element of GC.4. dim F pPl,λ = dim F p

0 Pl,λ, S(F p, F w+1−p) = 0, and all powers of N are stri
t with respe
tto F •.As to the proof, let us just remark that obviously 2. implies 1., 3., and 4. The equivalen
e of1., 2. and 3. is proved in [Her99, Ch. 2℄. The only remaining point is that 4. implies 1.-3.,whi
h is rather te
hni
al. As we will not use the 
hara
terization 4., it is skipped here.Also the following is proved in [Her99, 
hapter 2℄.Proposition 2.6. In the situation of lemma 2.5, 
onsider the set
ĎPMHS (H∞, H∞

R
, N, S, F •

0 , Ms, w) :=
{�ltrations F •H∞ | F •H∞ is Ms-invariantand satis�es the equivalent 
onditions in lemma 2.5}.It is a 
omplex homogeneous spa
e on whi
h GC a
ts transitively. The set

DPMHS(H∞, H∞
R , N, S, F •

0 , Ms, w) :=
{�ltrations F •H∞ | F •H∞ is Ms-invariant,

dim F pPl,λ = dim F p
0 Pl,λ, (H∞, H∞

R
, N, S, F •, Ms) is a PMHS of weight w

}5



is an open submanifold of ĎPMHS and a real homogeneous spa
e with transitive a
tion by a
ertain real group lying in between GC and GR = Aut(H∞
R

, N, S, Ms). It is a 
lassifying spa
efor the Ms-invariant PMHS with the same dis
rete data as the referen
e PMHS de�ned by F •
0 .Consider for l ≥ w the pairing Sl−w := S(−, N l−) on GrW

l , the primitive subspa
es Pl :=
Ker(N l−w+1) ⊂ GrW

l . They de
ompose as Pl = ⊕λPl,λ into eigenspa
es of Ms. Then we de�nefor any l ≥ w:
Ďl(H

∞, H∞
R

, N, S, F •
0 , Ms, w) :=

{�ltrations F •Pl |F pPl is Ms-invariant,
dim F pPl,λ = dim F p

0 Pl,λ, Sl−w(F pPl, F
l−p+1Pl) = 0

}
,

Dl(H
∞, H∞

R
, N, S, F •

0 , Ms, w) :=
{
F •Pl ∈ Ďl |F •Pl gives a PHS of weight l on Pl

}
,

ĎPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) :=

∏
l≥w

Ďl(H
∞, H∞

R
, N, S, F •

0 , Ms, w),

DPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) :=

∏
l≥w

Dl(H
∞, H∞

R
, N, S, F •

0 , Ms, w).

ĎPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) is a proje
tive manifold and a 
omplex homogenous spa
e,

DPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) is an open submanifold and a real homogenous spa
e. Theproje
tion

πPMHS : ĎPMHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) −→ ĎPHS (H∞, H∞

R
, N, S, F •

0 , Ms, w)

F • 7−→ ∏
l≥w F •Plis an a�ne �ber bundle with �bre isomorphi
 to CNPMHS for some NPMHS ∈ N ∪ {0}. The
lassifying spa
e DPMHS is the restri
tion of the total spa
e of this bundle to DPHS , in otherwords, we have the following diagram of proje
tions and in
lusions

ĎPMHS(H∞, H∞
R

, N, S, F •
0 , Ms, w)

πPMHS−→ ĎPHS(H∞, H∞
R

, N, S, F •
0 , Ms, w)

∪ ∪
DPMHS(H∞, H∞

R
, N, S, F •

0 , Ms, w) −→ DPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w).

(2.2)The next de�nition introdu
es the main obje
ts of this paper, namely, the 
lassifying spa
es ofregular singular TERP-stru
tures. The most dire
t way to �x the data needed to de�ne thesespa
es is to 
onsider a referen
e TERP-stru
ture (H (0), H ′
R
,∇, P, w), whi
h is supposed to bemixed. This de�nes the set of dis
rete data needed, among them are the topologi
al data of

(H(0), H ′
R
,∇, P, w) as well as its spe
tral numbers.De�nition 2.7. Let (H(0), H ′

R
,∇, P, w) be a regular singular mixed TERP-stru
ture. Considerits topologi
al data (H∞, H∞

R
, M, S, w) as de�ned in de�nition 2.2. We also have the �ltration

F̃ •
0 := F̃ •

H(0) and the spe
tral numbers of H(0) as in de�nition 2.3. Then, using proposition 2.6we de�ne
ĎPMHS := ĎPMHS (H∞

1 , (H∞
R

)1,−N, S, F̃ •
0 , id, w)

× ĎPMHS(H∞
6=1, (H

∞
R

) 6=1,−N, S, F̃ •
0 , Ms, w − 1)

(2.3)6



and similarly DPMHS , ĎPHS , DPHS .Write, as before, H ′ := H
(0)
|C∗. Then we are interested in all possible extensions of H ′ to a ve
torbundle H on C making (H, H ′

R
,∇, P, w) into a TERP-stru
ture and su
h that the asso
iated�ltration is an element in the spa
e ĎPMHS just de�ned. This leads to the following de�nition.

ĎBL :=
{free OC,0-submodules H0 of V >−∞

0 | (z2∇z)H0 ⊂ H0, (2.4)
P (H0,H0) = zwOC, F̃ •

H ∈ ĎPMHS

}

DBL :=
{
H0 ∈ ĎBL | F̃ •

H ∈ DPMHS

} (2.5)Noti
e �rst that as any element H0 in ĎBL de�nes an extension of the �xed (�at) bundle H ′on C∗, one may rephrase the de�nition of ĎBL by saying that its elements are the bundles Hon C extending H ′ su
h that (H, H ′
R
,∇, P, w) is a regular singular TERP-stru
ture and su
hthat the asso
iated �ltration F̃ •

H lies in the same 
lassifying spa
e as F •
H(0) . Similarly, DBL
onsists of bundles H su
h that (H, H ′

R
,∇, P, w) is a regular singular mixed TERP-stru
turewith F̃ •

H(0) ∈ DPMHS .We already remarked that ĎPMHS ,DPMHS , ĎPHS ,DPHS are 
omplex manifolds and 
omplex resp.real homogenous spa
es. A priori, the above de�nition des
ribes ĎBL resp. DBL only as a setwith no obvious topologi
al or analyti
al stru
ture. However, one of the main results of [Her99℄(see also [Her02, proof of theorem 12.8℄) is that ĎBL has a natural stru
ture of a 
omplexmanifold and that the proje
tion πBL : ĎBL → ĎPMHS , H 7→ F̃ •
H is a a�ne �bre bundle over

ĎPMHS with �bres isomorphi
 to CNBL for some NBL ∈ N∪{0}. Moreover DBL is the restri
tionof the map πBL to DPMHS . Noti
e that 
ontrary to ĎPMHS , DPMHS , ĎPHS and DPHS , the spa
es
ĎBL and DBL are not homogenous. However, there is a good C∗-a
tion on the �bers of πBL, the
orresponding zero se
tion ĎPMHS →֒ ĎBL 
onsists of the regular singular TERP-stru
tures in
ĎBL whi
h are generated by elementary se
tions, see [Her99, theorem 5.6℄.Noti
e also that it follows from the de�nition of the spa
e ĎBL that all elements H ∈ ĎBL havethe same spe
tral numbers, namely those of H(0). The reason for this is that the spe
trum isdetermined by the topologi
al data (more pre
isely, by the eigenvalues of M) and the �ltration
F̃ •
H (namely, by its Hodge numbers, i.e., the dimensions dim Gr

⌊w−α⌋
F H∞

e−2πiα , see formula (2.1)).Moreover, the de�nition of the spa
e ĎPMHS (
ondition 1. in lemma 2.5) shows that thesenumbers are 
onstant for all F • ∈ ĎPMHS , namely they are equal to those of F̃ •
H(0) . We willdenote all along this arti
le these spe
tral numbers by α1, . . . , αµ, where µ := dimC(H∞).The following diagram 
ompletes diagram (2.2) and visualizes how all of the above de�nedmanifolds are interrelated.

ĎBL
πBL−→ ĎPMHS

πPMHS−→ ĎPHS

∪ ∪ ∪
DBL −→ DPMHS −→ DPHS .

(2.6)3 The tangent bundle and horizontal dire
tionsThis se
tion gives a 
on
rete des
ription of the tangent bundle of the manifold ĎBL using aKodaira-Spen
er map. This des
ription is used in an essential way in the 
urvature 
al
ulationin the next se
tion. 7



Consider the �at bundle H ′ ∈ VBC∗ (with real stru
ture) and the pairing P : H′⊗ j∗H′ → OC∗whi
h 
orrespond to (H∞, H∞
R

, S, M, w) by [HS07, lemma 5.1℄. By abuse of notation, we willdenote by H ′ (resp. H′ for its sheaf of se
tions) the pullba
k of this bundle by the proje
tion
π′ : C∗ × ĎBL → C∗. This bundle 
omes equipped with an integrable 
onne
tion, whi
h isthe pullba
k of the original 
onne
tion of H ′ ∈ VBC∗ . Similarly, P pulls ba
k to a pairing
(π′)∗P : H′ ⊗ j∗H′ → O

C∗×ĎBL
, whi
h we denote, by abuse of notation, again by P . We also
onsider the pullba
ks of the Deligne latti
es V α and V >α and of the meromorphi
 bundle V >−∞under the proje
tion π : C × ĎBL → ĎBL. We write Vα, V>α and V>−∞ for the pull-ba
ks

π∗V α, π∗V>α and π∗V>−∞, respe
tively. All of them are extensions of H′ to C× ĎBL, i.e., wehave Vα,V>α,V>−∞ ⊂ i∗H′, where i : C∗ × ĎBL →֒ C × ĎBL is the in
lusion. Noti
e howeverthat Vα and V>α are O
C×ĎBL

-lo
ally free, whereas V>−∞ is only O
C×ĎBL

[z−1]-lo
ally free. Byde�nition, we have a 
onne
tion operator
∇ : Vα −→ Vα ⊗ Ω1

C×ĎBL
(log {0} × ĎBL),and similarly for V>α.From the very de�nition of the spa
e ĎBL, we see that there is another naturally de�nedextension of H′ to C × ĎBL, whi
h we 
all L. It is the universal family of Brieskorn latti
es,i.e., L|C×{t} = H(t) for any t ∈ ĎBL. It 
an equally be des
ribed by gluing the lo
ally de�nedbundles over C×U , U ⊂ ĎBL, given by the bases 
onstru
ted in [Her99, lemma 5.2 to theorem5.6℄. The pairing P has the property that P (L,L) ⊂ zwOC×ĎBL

and that z−wP de�nes anon-degenerate symmetri
 pairing on L/zL. In parti
ular, the original P on H′ takes values in
OC×ĎBL

[z−1] when restri
ted to V>−∞.By de�nition, L 
omes equipped with a 
onne
tion
∇ : L → L⊗

(
z−2Ω1

C×ĎBL/ĎBL
⊕ Ω1

C×ĎBL/C(∗{0} × ĎBL)
)

.Using the Deligne extensions Vα, we 
an give a pre
ise statement on the pole order of ∇ on L.De�ne n := [αµ − α1], note that if n = 0 then the 
lassifying spa
e ĎBL 
onsists of a singleelement only, namely, the latti
e V α1 .Lemma 3.1. Suppose that n > 0. Then L is stable under zn∇X for any X ∈ p−1TĎBL
, i.e.,we have a 
onne
tion operator

∇ : L −→ L⊗
(
z−2Ω1

C×ĎBL/ĎBL
⊕ z−nΩ1

C×ĎBL/C

)Proof. As explained before, any H ∈ ĎBL has the spe
tral numbers α1, . . . , αµ. It follows inparti
ular hat V α1 ⊃ H ⊃ V >αµ−1. The �rst in
lusion is obvious, for the se
ond, if we hadany s ∈ V >αµ−1 whi
h is not a se
tion of H, then there would be a k ∈ N>0 with zks ∈ Hwhi
h implies (if we take a minimal su
h k) that the prin
ipal part of zks does not vanishin GrV
• (H/zH). In other words, we would get a spe
tral number larger then αµ, whi
h isimpossible. As these in
lusions of latti
es hold true at any point of ĎBL, we have

Vα1 ⊃ L ⊃ V>αµ−1.Now let s be any lo
al se
tion of L, then s ∈ Vα1 , so that
∇X(s) ⊂ Vα1 ⊂ V>−n+αµ−1 = z−nV>αµ−1 ⊂ z−nL.8



The following lemma will be useful for the proof of lemma 3.5, but it will also be used in the
omputations in the next se
tion.Lemma 3.2. Consider a module H ∈ ĎBL and a lo
al OC-basis v(0) := (v
(0)
1 , . . . , v

(0)
µ ) of H.1. There exists a small neighborhood U1 × U2 of (0,H) ∈ C × ĎBL and a unique basis

v := (v1, . . . , vµ) of L|U1×U2 whi
h is an extension of v(0) and whi
h satis�es
v = v(0) ·

(
1µ +

n∑

k=1

z−kCk

) (3.1)where Ck ∈ M(µ×µ,OĎBL
(U2)). Here v(0) is extended to a se
tion in π−1V >−∞ ⊂ V>−∞,and this equation holds in V>−∞, i.e., meromorphi
ally along z = 0.2. If z−wP ((v(0))tr, v(0)) is a 
onstant µ × µ-matrix then so is z−wP ((v)tr, v).3. If v(0) is a good basis for H in the sense of [Sai89℄ (i.e., if it proje
ts to a basis of theve
tor spa
e GrV

• (H/zH)) then v is a good basis for L|U1×U2. Here being a good basis for
L|U1×U2


an be expressed in two equivalent ways: Either we require that for any t ∈ U2,the restri
tion of v to U1 × {t} is a good basis of the restri
tion L|U1×{t} or we ask that
v proje
ts to a OU2-basis of GrV• (L/zL). These requirements are equivalent as the lattermodule is lo
ally free due to the fa
t that the spe
tral numbers of L|C×{t} are the same forea
h t ∈ U2.Proof. 1. Consider a holomorphi
 extension v′ = (v′

1, ..., v
′
µ) of v(0) in a suitable neighborhood

∆ε × U ′
2 of (0,H). The matrix Ψ with v′ = v(0) · Ψ is holomorphi
 and invertible on

∆∗
ε × U ′

2 and de�nes a 
o
y
le in H1(P1 × U ′
2,GL(µ,O∗

P1×U ′
2
)) and thus a ve
tor bundleon P1 × U ′

2. Be
ause the restri
tion to P1 × {H} is trivial, the restri
tion to P1 × U2for some U2 ⊂ U ′
2 is a family of trivial ve
tor bundles on P1. The Birkho� fa
torization(see, e.g., [Mal83, proposition 4.1℄) yields unique matri
es Ψ0 ∈ Γ(∆ε × U2,O∗

∆ε×U2
) and

Ψ∞ ∈ Γ((P1\{0})×U2,O∗
(P1−{0})×U2

) with Ψ∞|{∞}×U2
= 1µ and Ψ = Ψ∞ ·Ψ−1

0 . Consider
v := v(0) · Ψ∞ = v′ · Ψ0.As in the proof of lemma 3.1, we 
on
lude from

L ⊂ Vα1 ⊂ V>αµ−1−n = z−nV>αµ−1 ⊂ z−nOC×ĎBL
⊗OC

Hthat L ⊂ z−nOC×ĎBL
⊗OC

H. It follows that the matrix Ψ∞ satis�es Ψ∞ = 1µ +∑n
k=1 z−kCk. Uniqueness is now also 
lear.2. This follows from z−wP (L,L) = R and z−wP (vi, vj) − z−wP (v

(0)
i , v

(0)
j ) ∈ z−1OU2[z

−1].3. First we introdu
e two notations: within V>−∞ and Vα we 
onsider the π−1OĎBL
-module

Cα 
onsisting of elementary se
tions of order α on C∗ × ĎBL. Then any vi ∈ L|U1×U2 
anbe written as a sum vi =
∑

β≥α1
s(vi, β) where s(vi, β) ∈ Cβ(C× U2).9



That v(0) is a good basis means that v
(0)
i =

∑
β≥αi

s(v
(0)
i , β) and that

GrV
α H =

⊕

i,k:k≥0,αi+k=α

OC · zk · s(v(0)
i , αi).Then for any β all se
tions zk ·s(v(0)

i , αi) where k ∈ Z, αi+k = β are linearly independent.In a small neighborhood U3 ⊂ U2 of H the se
tions (zk · s(vi, αi))k∈Z,αi+k=β inherit thisproperty of being linearly independent.For any vj , de�ne βj to be the unique 
omplex number su
h that s(vj , βj) 6= 0 and
s(vj, β) = 0 for β < βj . We have βj ≤ αj. Formula (3.1) and the linear independen
e ofthe zk · s(v(0)

i , αi) show
s(vj , βj) = δβj ,αj

· s(v(0)
j , αj) +

∑

k,i,j:αi−k=βj

(Ck)ij · z−k · s(v(0)
i , αi) (3.2)(remember that this is an equation in V>−∞, where the se
tions vj of H ⊂ V >−∞ hasbeen extended to se
tions in π−1V >−∞ ⊂ V>−∞).The main point is to show

(Ck)ij = 0 for αi − k < αj . (3.3)Then βj = αj and s(vj, αj) ∈ GrV
αj
L(U2). From this and the linear independen
e of the

zk · s(vi, αi) it follows that v is a good basis, �rst on a small U3 ⊂ U2, then on all of U2.In order to show (3.3) we argue indire
tly. Suppose (Ck)ij 6= 0 for some αi − k < αj andsuppose that αi−k is minimal with this property. Then βj = αi−k for this j, and βl = αlfor all l with αl ≤ αi − k. Then in a neighborhood U4 ⊂ U2 of H for any γ ≤ βj = αi − k
⊕

l,m:m≥0,αl+m=γ

OC×U4 · zm · s(vl, αl)is a submodule of GrV
γ L|U4

of the same rank and thus 
oin
ides with GrV
γ L|U4

. But in the
ase γ = βj = αi − k we have additionally s(vj, βj) ∈ GrV
γ L|U4

, and by (3.2) and by thelinear independen
e, it is not a linear 
ombination of the se
tions above. Thus (Ck)ij = 0if αi − k < αj .Next we give a 
on
rete des
ription of the tangent bundle of ĎBL using the universal bundle
L. For this purpose, we will introdu
e some auxiliary holomorphi
 bundles on ĎBL. Wewill des
ribe lo
al bases of these bundles, these will be written as row ve
tors. We use the
onvention that given a (sheaf of) A-module(s) N , one 
an multiply matri
es with entries of Nwith matri
es with entries in A by s
alar multipli
ation. Moreover, we make use of the tensorprodu
t of matri
es, and in parti
ular of the following rules, where the matri
es involved aresupposed to have the appropriate size.

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D), (3.4)
(A ⊗ B)−1 = A−1 ⊗ B−1, (3.5)

(A ⊗ B)tr = Atr ⊗ Btr, (3.6)
(X ⊗ Y ) · Avec = (Y · A · X tr)vec. (3.7)10



In the last formula, we denote for any matrix A ∈ M(m × n,A) by Avec ∈ M(nm × 1,A) the
olumn ve
tor obtained by sta
king the 
olumns of A in a single one. Finally, we denote thesheaf of rings O
C×ĎBL

by R and its lo
alization along {0} × ĎBL by R[z−1].De�ne M := EndR[z−1](V>−∞), then M is a meromorphi
 bundle with 
onne
tion indu
edfrom V>−∞. This 
onne
tion is obviously regular singular so that M 
arries its own V -�ltration, 
hara
terized by V0M = {φ ∈ M|φ(Vα) ⊂ Vα ; ∀α}. Consider the R-submodule
G̃I := HomR(L, z−nL) of M, and the quotient

GI :=
G̃I

EndR(L)

GI is a z-torsion sheaf and 
an be identi�ed with HomR(L, z−nL/L). As an OĎBL
-module, itis lo
ally free of rank nµ2. Any se
tion v of the proje
tion L ։ k∗(L/zL) (here k : ĎBL →֒

C× ĎBL, t 7→ (0, t)) yields an isomorphism
GI ∼=

[
EndOĎBL

(Lsp,v)
]nwhere Lsp,v := Im(v). Any lo
al basis v = (v1, . . . , vµ) of L in a neighborhood of a point

(0, t) ∈ C × ĎBL (in parti
ular, this gives a se
tion v : k∗(L/zL) → L lo
ally) yields a lo
albasis of GI , namely (z ⊗ v∗ ⊗ v) ∈ M(1 × nµ2,GI ), where the symbol z denotes the ve
tor
(z−1, . . . , z−n). A lo
al se
tion φ ∈ GI is written in this basis as

φ =
∑

k=1,...,n

i,j=1,...,µ

(∆k)jiz
−k ⊗ v∗

i ⊗ vj = (z ⊗ v∗ ⊗ v)(

n∑

k=1

ek ⊗ ∆vec
k ) (3.8)where ∆k ∈ M(µ × µ,OĎBL

) and ek ∈ M(n × 1,C) is the k-th unit ve
tor.We will de�ne a 
hain GIV ⊂ GIII ⊂ GII ⊂ GI of subbundles of GI , and an inje
tive morphism
TĎBL

→֒ GI with image equal to GIV . This will give the des
ription of the tangent bundlealluded to above.De�nition 3.3. Put
G̃II :=

{
φ ∈ G̃I |P (φ(a), b) + P (a, φ(b)) ∈ zwR ∀ a, b ∈ L

}
,

G̃III := G̃II ∩V0M,

G̃IV :=
{
φ ∈ G̃III | ad(z2∇z)(φ) = [z2∇z, φ] ∈ EndR(L)

}
,and de�ne GII ,GIII resp. GIV to be the images of G̃II , G̃III resp. G̃IV in GI .From the de�nition it is 
lear that GII ,GIII and GIV are OĎBL

-
oherent. The following resultyields lo
al bases for GII and GIII showing that they are in fa
t lo
ally free. The same is truefor GIV , but it is more 
ompli
ated to give an expli
it lo
al base for that bundle. Instead, wegive a 
hara
terization of the elements of GIV . Its lo
al freeness will be shown in lemma 3.5.11



Lemma 3.4. Let v be a lo
al basis of L as above and suppose moreover that P mat := (P (vi, vj)) =
(δi+j,µ+1). Then we have

GII ∼=
⊕

(k,i,j)∈N

OĎBL
z−k ⊗

(
v∗

i ⊗ vj + (−1)k+1v∗
µ+1−j ⊗ vµ+1−i

)
,where

N :=
{
(k, i, j) ∈ {1, . . . , n} × {1, . . . , µ}2 | i + j < µ + 1 if k is even, i + j ≤ µ + 1 if k is odd } .Suppose moreover that v is a good basis in the sense of [Sai89℄, i.e., that v indu
es a basis of

Gr•V(L/zL). Order the elements of v in su
h a way that vi ∈ Grαi

V (L/zL). Then
GIII ∼=

⊕

(k,i,j)∈N

αi−k≥αj

OĎBL
z−k

(
v∗

i ⊗ vj + (−1)k+1v∗
µ+1−j ⊗ vµ+1−i

)
.Although there is no simple 
hoi
e for a basis of GIV , its elements 
an be 
hara
terized asfollows: An endomorphism φ ∈ G̃III lies in G̃IV i� the R[ǫ]/(ǫ2)-module

L̃ :=

µ⊕

i=1

R[ε]/(ε2) (vi + εφ(vi)) ,is stable under z2∇z.Proof. The �rst point follows from the simple 
omputation
P (φ(v)tr, v) + P (vtr, φ(v)) = v ·

n∑

k=1

z−k
(
∆tr

k · P mat + (−1)kP mat · ∆k

)
= 0 mod LFrom the 
ondition ∆tr

k · P mat + (−1)kP mat · ∆k = 0 one easily dedu
es the above bases of
GII and GIII . For the des
ription of GIV , note that L̃ is stable under z2∇z i� there is B′ ∈
M(µ × µ,OĎBL

) su
h that
(z2∇z)(v + εφ(v)) = v · (B + εB′),where (z2∇z)(v) = v · B. In the ring R[ε]/(ε2), this is equivalent to

[z2∇z, φ](v) = v · B′,i.e., to φ ∈ GIV .We are now in the position to 
ompare the bundle GI with the tangent bundle of ĎBL. De�nethe following morphism:
KS : TĎBL

−→ GI

X 7−→ [v ∈ L 7→ ∇Xv]where the bra
kets on the right-hand side denote the 
lass in the quotient GI .12



Lemma 3.5. GIV is a bundle, and KS is a bundle isomorphism from TĎBL
to GIV .Proof. First we will prove that given X ∈ TĎBL

, the 
ovariant derivative ∇X really de�nes anelement in GI . It was already shown that for any v ∈ L, ∇Xv lies in z−nL. On the other hand,if f ∈ OĎBL
, then ∇X(f · v) = f∇X(v)+X(f) · v, but X(f) · v ∈ L, so modulo End(L) we have

∇X(f · v) = f∇X(v). Moreover, the �atness of P implies that P (∇X(−),−) + P (−,∇X(−)) =
XP (−,−), so Im(KS) ⊂ GII and it is 
lear that the V-�ltration is respe
ted, i.e., that we getan element in V0M, as we derive only in parameter dire
tion. This proves Im(KS ) ⊂ GIII .From [z2∇z,∇X ] = 0 it follows immediately that Im(KS) ⊂ GIV .The last step of the proof is to show that KS maps TĎBL

isomorphi
ally onto GIV . Then itfollows that GIV is lo
ally free. We will use the 
onstru
tion of 
oordinates on the �bers resp.on the base of the proje
tion ĎBL → ĎPMHS in [Her99, Ch. 5℄ resp. in [Her02, proof of theorem12.8℄. We will rephrase the out
ome of these 
onstru
tions, without going into details. Fromthat it will follow that KS is a bundle isomorphism onto GIV .Having �xed a referen
e TERP-stru
ture, we �rst 
onsider the larger spa
es
DSp = {H ⊂ V α1 | H is a free OC −modulewith spe
tral numbers α1, ..., αµ},
DF l = {F̃ •

H| H ∈ DSp},where F̃ •
H denotes the �ltration de�ned by H on the spa
e H∞ (see de�nition 2.3). We havean obvious proje
tion DSp → DF l. Here DF l is a �ag manifold, and DSp is also a manifold,with �bers isomorphi
 to some NSp ∈ N. Lo
al 
oordinates on DSp and DF l 
an be 
hosen asfollows: For some H ∈ DSp one �xes a good basis v0. The analogue of lemma 3.2 holds andprovides a unique good basis v in a neighborhood U of H ∈ DSp where

v = v0 ·
(
1µ +

n∑

k=1

z−kCk

)with (Ck)ij = 0 if αi − k < αj. Now the (Ck)ij with αi − k ≥ αj are lo
al 
oordinates on DSpand those with αi − k = αj are lo
al 
oordinates on DF l.The 
onstru
tion of 
oordinates on ĎBL in [Her99℄[Her02℄ amounts to the following: For H ∈
ĎBL ⊂ DSp a very spe
ial good basis was 
hosen. It gives lo
al 
oordinates (Ck)ij with αi−k ≥
αj on DSp. The 
onditions from the pairing P and the pole of order 2, whi
h determine ĎBLin DSp lo
ally, were shown to give a set of equations in (Ck)ij whose linear parts are linearlyindependent. This proved the smoothness of ĎBL.Now the de�nition of GIV uses exa
tly these linear parts. This shows the inje
tivity of KS andthat Im(KS ) = GIV .By abuse of notation, we 
all KS the Kodaira-Spen
er morphism, although this is the 
orre
tname only if we 
onsider KS as an isomorphism between TĎBL

and GIV .It will be useful to have a lo
al 
hara
terization of GIV in the basis of GIII given above. Let
φ = (z⊗v∗⊗v)(

∑n
k=1 ek⊗∆vec

k ) be a lo
al se
tion of GIII , i.e., (∆k)ij+(−1)k(∆k)µ+1−j,µ+1−i = 0and (∆)ij = 0 for all αi − k < αj . Then ∆ ∈ GIV i� there is B′ ∈ M(µ × µ,R) su
h that
(z2∇z)(v + εφ(v)) = v · (B + εB′)13



where B ∈ M(µ × µ,R) is de�ned by (z2∇z)(v) = v · B. This is equivalent to
B′ = [B,

n∑

k=1

z−k · ∆k] +
n∑

k=1

(−k)z−k+1 · ∆k.

B′ is required to be holomorphi
, so that the 
oe�
ients of all stri
tly negative powers of z inthis equation must vanish. Writing B =
∑∞

k=0 zk · Bk−1, there are a priori 
onditions for any
l = 1, ..., n (with ∆n+1 := 0):

0 = (
oe�
ient of z−l) = (−1 − l)∆l+1 +

n∑

k=l

[Bk−1−l, ∆k]. (3.9)However, as we are working with a good basis v of L, it follows that vi ∈ Vαi and (z∇z)vi ∈ Vαi .This gives (Bk)ij = 0 for all αi + k < αj . Remember also that (∆k)ij = 0 for αi − k < αj. Theequation [∆n, B−1] = 0 is thus trivially satis�ed, so that the 
onditions (3.9) are non-emptyonly for l ∈ {1, . . . , n − 1}.We will now de�ne the analogue of the subbundle of horizontal tangent dire
tions on the
lassifying spa
es ĎPHS in the sense of [S
h73℄ for the spa
e ĎBL.De�nition-Lemma 3.6. De�ne the following subsheaf of GI :
GI ,hor := Image of HomR(L, z−1L) in GI ,and put GII ,hor := GI ,hor ∩GII , GIII ,hor := GI ,hor ∩GIII and GIV ,hor := GI ,hor ∩GIV . Then

GI ,hor,GII ,hor and GIII ,hor are OĎBL
-lo
ally free. GIV ,hor is an OĎBL

-
oherent subsheaf of GIV . Itis equal to GIV and thus lo
ally free if n = ⌊αµ − α1⌋ = 1. We 
all T hor
ĎBL

:= KS
−1(GIV ,hor) thesubsheaf of horizontal tangent dire
tions or horizontal tangent sheaf for short.Proof. The OĎBL

-
oheren
e of all of the sheaves in question is obvious from their de�nition,and one obtains lo
al bases of GI ,hor, GII ,hor resp. GIII ,hor by restri
ting the bases of GI , GIIresp. GIII to k = 1. A se
tion φ = (z ⊗ v∗ ⊗ v)(
∑n

k=1 ek ⊗ ∆vec
k ) is 
ontained in one of thesesubbundles i� ∆k = 0 for k > 1. The equality GIV ,hor = GIV for n = 1 is obvious from thede�nition as we have GI ,hor = GI in this 
ase.In the remainder of this se
tion, we show that GIV ,hor is not lo
ally free in general. For thatpurpose, 
onsider the lo
al basis of GIII ,hor given above. In this basis, the 
onditions for a se
tion

φ ∈ GIII ,hor to be an element in GIV ,hor are simply obtained from formula (3.9) by putting all
∆k = 0 if k > 1. This yields the unique equation

[B−1, ∆1] = 0. (3.10)Note that B−1 is the matrix of the pole part of ∇z with respe
t to v, i.e., of the endomorphism
U := [z2∇z] ∈ EndOĎBL

(L/zL). Similarly, ∆1 is by de�nition the matrix of the 
lass [zφ] ∈
EndOĎBL

(L/zL). This shows that we have the following simple 
hara
terization
GIV ,hor =

{
φ ∈ GIII ,hor | [U , [zφ]] = 0

}
.14



We have U , [zφ] : V•(L/zL) ⊂ V•+1(L/zL), so that [U , [zφ]] = 0 if n = 1. This implies
GIV ,hor = GIII ,hor, in parti
ular, GIV = GIII ,hor in this 
ase.If n ≥ 2 then in general GIV ,hor will not be lo
ally free. The reason is that in general the rankof the 
ondition [U , [zφ]] = 0 varies within ĎBL. Note however that the base ĎPMHS 
arries ahorizontal subbundle, as it is a homogeneous spa
e, so that the obstru
tion for GIV ,hor to belo
ally free lies in the �bers of ĎBL → ĎPMHS . We will des
ribe a situation where this a
tuallyo

urs.For simpli
ity we restri
t to a situation in whi
h dim Cα = 1 for all α. Then N = 0 and
DPHS = ĎPHS = DPMHS = ĎPMHS = {pt}, so that DBL = ĎBL = CNBL for some NBL. We
hoose v0

i ∈ Cαi with P (v0
i , v

0
µ+1−j) = δij. By [Her99, Ch. 5℄ formula (3.1) holds on all of ĎBL,with

(Ck)ij = 0 for αi − k ≤ αj ,

(αi − k − αj) · (Ck)ij =
∑

l

(αl − 1 − αj) · (Ck−1)il(C1)lj ,

(C1)ij = (C1)µ+1−j,µ+1−i,

U([v]) = [v] · ((αi − 1 − αj) · (C1)ij),and global 
oordinates on ĎBL are given by those (C1)ij where i + j ≤ µ + 1. The zero pointof these 
oordinates is the TERP-stru
ture H0 =
⊕OC · v0

i .In the basis of GIII ,hor in de�nition-lemma 3.6
[zφ]([v]) = [v] · ∆1with (∆1)ij = 0 if αi − 1 ≤ αj (equality is impossible due to dim Cα = 1) and (∆1)ij =

(∆1)µ+1−j,µ+1−i. We have rankGIII ,hor = NBL and
T hor
|0 ĎBL

∼= GIV ,h
|0 = GIII ,h

|0
∼= T|0ĎBLas U and [zφ] 
ommute at the point 0. To prove that GIV ,hor is not lo
ally free it is su�
ientto show that the 
ondition [U , [zφ]] = 0 is non-empty at some point t ∈ ĎBL .If there are αi, αl, αm with αi − 2 > αl − 1 > αm and m 6= µ + 1− i then the (i, m) entry of the
ommutator of the matri
es 
orresponding to U and [zφ] is

∑

j

((αi − 1 − αj)(C1)ij · (∆1)jm − (∆1)ij · (αj − 1 − αm)(C1)jm) .This sum is non-empty be
ause j = l gives a term, and all present (∆1)-
oe�
ients are di�erent.So if (C1)il(t) 6= 0 this gives a non-empty 
ondition, and rank T hor
|t ĎBL < rank T hor

|0 ĎBL.An example of this type 
an be 
onstru
ted starting with a suitable semiquasihomogeneousdeformation of a Brieskorn-Pham singularity f = xa0
0 +xa1

1 +xa2
2 where g
d(ai, aj) = 1 for i 6= jand su
h that 1

a0
+ 1

a1
+ 1

a2
is su�
iently small.4 Holomorphi
 se
tional 
urvatureOne of the most interesting features of a TERP-stru
ture is the 
onstru
tion of a 
anoni
alextension to a twistor, i.e., a P1-bundle. Starting with a family of TERP-stru
tures, this yields15



a C∞-family (whi
h is a
tually real analyti
) of twistors. Let us brie�y re
all how this is done(see [Her03℄ and [HS07℄ for more details).Given a TERP-stru
ture (H, H ′
R
,∇, P, w), de�ne for any z ∈ C∗ the anti-linear involution

τ : Hz −→ H1/z

s 7−→ ∇-parallel transport of z−wsThe image τ(H0) of the germ of se
tions of H at zero is 
ontained in the germ (̃i(H′))∞, where
ĩ : C∗ → P1\{0}. This de�nes an extension of H to in�nity, whi
h is a holomorphi
 P1-bundle,i.e., a twistor. We will denote it by Ĥ . If Ĥ is trivial, then we 
all the original TERP-stru
turepure. Moreover, in this 
ase we 
an de�ne a hermitian pairing h on H0(P1, Ĥ) by the formula
h(a, b) := z−wP (a, τb). If this form is positive de�nite, then (H, H ′

R
,∇, P, w) is 
alled purepolarized. We only remark (this is dis
ussed in detail in [Her03℄ and [HS07℄) that if we startwith a family of TERP-stru
tures, then this extension pro
edure yields a real analyti
 familyof twistors. De�ne

Ďpp
BL :=

{
H ∈ ĎBL | Ĥ is pure polarized } .One of the main results in [HS07℄, namely, theorem 6.6 says that a regular singular TERP-stru
ture is an element of DBL i� it indu
es a nilpotent orbit, i.e. i� the pullba
k

π∗
r(H, H ′

R,∇, P ),where πr : C → C, z 7→ r · z, is a pure polarized TERP-stru
ture for any r ∈ C∗ with |r|su�
iently small.Su
h a pullba
k is then also an element of DBL. Therefore the set Ďpp
BL of all pure polarizedTERP-stru
tures in ĎBL is non-empty, and it interse
ts DBL nontrivially. The 
ondition to bepure and polarized is open, so Ďpp

BL is an open submanifold of ĎBL.There is no reason to expe
t Ďpp
BL ⊂ DBL, but the interse
tion Ďpp

BL ∩ DBL seems to be mostinteresting for appli
ations. If N = 0 then DPHS = DPMHS and moreover Ďpp
BL ∩DBL 
ontains aneighborhood of the zero se
tion DPMHS →֒ DBL. The reason is that if N = 0, then the a
tionby pullba
k π∗

r 
oin
ides with the good C∗-a
tion 
onsidered in [Her99, Theorem 5.6℄.Performing the above 
onstru
tion on the whole 
lassifying spa
e ĎBL yields an extension ofthe universal bundle L to a real analyti
 family of twistors L̂, that is, a lo
ally free OP1Can
ĎBL

-module. Moreover, on the subspa
e Ďpp
BL the sheaf of �brewise global se
tions p∗L̂|Ďpp

BL
is byde�nition lo
ally free over Can

Ďpp
BL

and 
omes equipped with a positive de�nite hermitian metri
 h.We will show that this indu
es positive de�nite hermitian metri
s on the bundles GI , . . . ,GIV ,restri
ted to Ďpp
BL.Denote by K the sheaf Can

Ď
pp

BL

⊗L|Ďpp
BL

and put Ksp := p∗L̂|Ďpp
BL
, then we have a hermitian metri


h := z−wP (−, τ−) on the Can

Ď
pp

BL

-module Ksp . We obtain a splitting
k−1K = Ksp ⊕ k−1(zK)where k : Ďpp

BL →֒ C× Ďpp
BL, t 7→ (0, t). This yields

Can
Ď

pp

BL

⊗k−1 GI = Homk−1OC Can

Ď
pp
BL

(
Ksp ⊕ k−1(zK), k−1

(
z−nK
K

))
∼=

HomCan

Ď
pp
BL

(
Ksp ,⊕n

k=1z
−k Ksp

)
= ⊕n

k=1HomCan

Ď
pp
BL

(
Ksp , z−k Ksp

) ∼=
[
EndCan

Ď
pp
BL

(Ksp)

]n16



We obtain a hermitian metri
 on EndCan

Ď
pp
BL

(Ksp) (and its powers) by h(φ, φ′) = Tr(φ · (φ′)∗),where (−)∗ denotes the hermitian adjoint. This indu
es a metri
 on GI and by restri
tion onthe subbundles GII , GIII and GIV . We denote these metri
s by hI , . . . , hIV . We remark that
hoosing any lo
al basis u ∈ M(1× n,K) of K in a neighborhood of a point (0, t) ∈ {0}× Ďpp
BLyields a similar splitting

k−1K = Ksp,u ⊕ k−1(zK) and Can

Ď
pp

BL

⊗GI ∼=
[
EndCan

Ď
pp
BL

(Ksp,u)

]n

,where Ksp,u := ⊕µ
i=1 Can

Ď
pp

BL

ui. If u is a global basis of L̂|Ďpp
BL
, then Ksp,u = Ksp . If u happensto be holomorphi
, i.e., u ∈ M(1 × µ,L), then GI ∼=

[
EndO

Ď
pp
BL

(Lsp,u)
]n, this isomorphism wasalready 
onsidered in se
tion 3. Similarly to the holomorphi
 basis from formula (3.8), weobtain a basis of Can

Ď
pp

BL

⊗GI ∼=
[
EndCan

Ď
pp
BL

(Ksp,u)

]n, namely, z ⊗ u∗ ⊗ u ∈ M(1 × nµ2, Can

Ď
pp

BL

⊗GI )and any se
tion φ of Can
Ď

pp
BL

⊗GI is written in the basis z ⊗ u∗ ⊗ u as
φ =

∑

k=1,...,n

i,j=1,...,µ

(Γk)jiz
−k ⊗ u∗

i ⊗ uj = (z ⊗ u∗ ⊗ u)(
n∑

k=1

ek ⊗ Γvec
k )

(remember that z := (z−1, . . . , z−n), that ek ∈ M(n × 1,C) is the k-th unit ve
tor and that
Avec denotes the 
olumn ve
tor of a matrix A as explained after formula (3.7)).Re
all the Kodaira-Spen
er map from lemma 3.5

KS : TĎpp
BL

→֒ GI

X 7−→ [v 7→ ∇Xv]),whi
h endows TĎpp
BL

with a positive de�nite hermitian metri
 whi
h we simply denote by h.Re
all also that we denoted by T hor
Ďpp

BL

the 
oherent subsheaf of TĎpp
BL

de�ned by T hor
Ďpp

BL

:=

KS
−1(HomO

C×Ď
pp
BL

(H, z−1H
H

)), and that it is not lo
ally free in general. However, it 
ontainsthe zero se
tion of TĎpp
BL

→ Ďpp
BL, and we may 
onsider the holomorphi
 se
tional 
urvature ofthe metri
 h on ve
tors of T hor

Ďpp
BL

\{zero se
tion}. Let us brie�y re
all its the de�nition: Givenany holomorphi
 bundle E on a 
omplex manifold M and a positive de�nite hermitian metri
 hon E, there is a unique 
onne
tion D : E → E⊗A1
M su
h that D(h) = 0 and su
h that the (0, 1)-part of D 
oin
ides with the operator de�ning the holomorphi
 stru
ture of E . D is 
alled theChern 
onne
tion of (E, h). Its 
urvature is by de�nition the se
tion R of EndCan

M
(Can

M ⊗E)⊗A1,1
Mgiven by e

R7→ D(2)(D(e)), here D(2) : E ⊗ A1
M → E ⊗A2

M , D(2)(e ⊗ α) = D(e) ∧ α + s ⊗ dα. If
E is the holomorphi
 tangent bundle of M , then the fun
tion

κ : TM\{zero se
tion} −→ R

ξ 7−→ h(R(ξ, ξ)ξ, ξ)/h(ξ, ξ)217



is 
alled the holomorphi
 se
tional 
urvature of M .We are now able to state the main result of this se
tion.Theorem 4.1. The restri
tion of the holomorphi
 se
tional 
urvature κ : TĎpp
BL
\{zero-se
tion} →

R to the (linear spa
e asso
iated to the) 
oherent subsheaf T hor
Ďpp

BL

is bounded from above by a neg-ative real number.Proof. First re
all a formula for the 
urvature tensor of the Chern 
onne
tion on an arbitrarybundle. Let, as before, E be a holomorphi
 ve
tor bundle of rank µ on a 
omplex manifold
M and h : E ⊗ E → Can

M a positive de�nite hermitian metri
. For a lo
al holomorphi
 basis
e ∈ M(1 × µ, E), put H := (h(etr, e))

tr ∈ M(µ × µ, Can
M ). The 
urvature R is linear, thus

R(e) = eMR, where MR ∈ M(µ × µ,A1,1
M ). It is well known (see, e.g., [CMSP03, lemma 11.4℄)that

MR = H−1∂∂H − H−1∂(H) ∧ H−1∂H.In parti
ular, for any holomorphi
 ve
tor �eld X ∈ TM , we have
MR(X, X) = −H−1(XX)(H) + H−1X(H)H−1X(H) ∈ M(µ × µ, Can

M ).If at a point x ∈ M , H(x) = Id, then MR(X, X)(x) = X(H)(x)X(H)(x)− (XX)(H)(x), or, ifwe write ξ := X(x), then
MR(X, X)(x) = ξ(H)ξ(H)− (XX)(H)(x). (4.1)This formula will allow a very signi�
ant simpli�
ation of the 
al
ulations. Let t ∈ Ďpp

BL,and let ξ ∈ T hor
t (Ďpp

BL) be any ve
tor with ξ 6= 0. Choose lo
al holomorphi
 
oordinates
(t1, . . . , tdim(Ďpp

BL
)) 
entered at t su
h that (∂t1)|t = ξ. Although we are interested in the 
urvaturetensor RIV of the bundle GIV

|Ďpp
BL

(whi
h is isomorphi
 to TĎpp
BL
), our �rst aim is to give anexpression for the matrix MR(∂t1 , ∂t1)(t) whi
h represents RI(∂t1 , ∂t1)(x) ∈ EndC(GI

|t) withrespe
t to a holomorphi
 basis in a neighborhood of t. This basis is indu
ed from a holomorphi
basis of L near (0, t), whi
h is obtained as follows: 
hoose a basis v0 ∈ M(1 × µ,L|C×{t}) of
L|C×{t} su
h that P ((v0)tr, v0) = 1µ and τ(v0) = v0. Then de�ne

v := v0

(
1µ +

n∑

k=1

z−kCk

)
∈ M(1 × µ,L)to be the extension provided by lemma 3.2. It still satis�es P (vtr, v) = 1µ, but not ne
essarily

τ(v) = v. Write KS (ξ) =
∑

k,i,j(∆k)ji (z
−k ⊗ (v

(0)
i )∗ ⊗ v

(0)
j ) (i.e. ∆k ∈ M(µ × µ,C)), thenit follows from ξ ∈ T hor

t (Ďpp
BL) that (∆k) = 0 for all k > 1. Moreover, as κ(∂t1) = (v 7→

v(
∑n

k=1 z−k∂t1Ck)), we 
on
lude that ξ(C1) = ∆1 and ξ(Ck) = ∆k = 0 for k > 1. The matri
es
H := [hI((z⊗v∗⊗v)tr, z⊗v∗⊗v)]tr and M(∂t1 , ∂t1) are elements of M(µ×µ, Can

Ď
pp
BL

), so that we
on
lude from formula (4.1) that M(∂t1 , ∂t1)(x) 
an obtained from the image of H under theredu
tion map M(µ × µ, Can

Ď
pp

BL

) ։ M(µ × µ,Q), where Q := Can

Ď
pp

BL

/(t21, t
2
1, tj , tj)j>1. In order tokeep the notation simple, we still 
all this redu
tion H . Moreover, it is 
lear that this redu
edmatrix H may be 
al
ulated from the image of the basis v under the map K ։ K ⊗ Q̃, where18



Q̃ := OC Can

Ď
pp

BL

/(t21, t
2
1, tj , tj)j>1. Again we denote this image by v. All subsequent 
al
ulationstake pla
e in either Q̃ or Q. In parti
ular, we have C1 = t1∆1 and Ck = 0 for k > 1 in Q. Thisimplies v = v(0)(1µ + z−1C1) and 1µ = P (vtr, v) = (1µ + z−1C1)

trP ((v0)tr, v0)(1µ − z−1C1) =
(1µ + z−1(Ctr

1 − C1)) so that Ctr
1 = C1.Consider the base 
hange given by w := v(1µ + 1

2
[C1, C1]+zC1). It follows from P (vtr, v) = 1µ,

C
tr

1 = C1 and [C1, C1]
tr = −[C1, C1] that P (wtr, w) = 1µ. Moreover, as
w = v(0)

(
1µ + zC1 + z−1C1 +

1

2
(C1C1 + C1C1)

)
,we also have τ(w) = w. It is a simple 
al
ulation to show that the inverse base 
hange is givenby

v := w · (1µ − 1

2
[C1, C1] − zC1)We obtain an indu
ed base 
hange on GI , given by (1µ − 1

2
[C1, C1] − zC1)

tr
)−1⊗(1µ−1

2
[C1, C1]−

zC1), i.e.:
z ⊗ v∗ ⊗ v = (z ⊗ w∗ ⊗ w) ·

[
1n ⊗

(
(1µ − 1

2
[C1, C1] − zC1)

−1
)tr ⊗ (1µ − 1

2
[C1, C1] − zC1)

]
=

z ⊗ w∗ ⊗ w ·


1n ⊗ (1µ ⊗ 1µ − 1

2
(1µ ⊗ [C1, C1] + [C1, C1] ⊗ 1µ)) + Nz ⊗ (C1 ⊗ 1µ − 1µ ⊗ C1)

︸ ︷︷ ︸
=:X


 ,here

Nz =




0 1 . . . 0
0 0 1 . . . 0...
0 0 . . . 0 1
0 0 . . . 0




.

Now we have
H = [hI((z ⊗ v∗ ⊗ v)tr, z ⊗ v∗ ⊗ v)]tr = [X trhI((z ⊗ w∗ ⊗ w)tr, z ⊗ w∗ ⊗ w)X]tr

= X
tr
X = 1n ⊗ (1µ ⊗ 1µ − 1µ ⊗ [C1, C1] − [C1, C1] ⊗ 1µ) + (Nz)

tr ⊗ (C1 ⊗ 1µ − 1µ ⊗ C1)

+Nz ⊗ (C1 ⊗ 1µ − 1µ ⊗ C1) + 1n−1 ⊗ (C1C1 ⊗ 1µ + 1µ ⊗ C1C1 − C1 ⊗ C1 − C1 ⊗ C1)where 1n−1 = N tr
z · Nz = diag(0, 1, . . . , 1). The next step is to invoke formula (4.1) to obtain19



the matrix MR(∂t1 , ∂t1)(x). Using C1 = t∆1, we get
ξ(H) = Nz ⊗ (∆1 ⊗ 1µ − 1µ ⊗ ∆1),

ξ(H) = N tr
z ⊗ (∆1 ⊗ 1µ − 1µ ⊗ ∆1),

(∂t1∂t1(H))(x) = −1n ⊗ (1µ ⊗ [∆1, ∆1] + [∆1, ∆1] ⊗ 1µ)+

1n−1 ⊗ (∆1∆1 ⊗ 1µ + 1µ ⊗ ∆1∆1 − ∆1 ⊗ ∆1 − ∆1 ⊗ ∆1),

MR(ξ, ξ) = 1n ⊗ (1µ ⊗ [∆1, ∆1] + [∆1, ∆1] ⊗ 1µ︸ ︷︷ ︸
=:S

)

−1n−1 ⊗ (∆1∆1 ⊗ 1µ + 1µ ⊗ ∆1∆1 − ∆1 ⊗ ∆1 − ∆1 ⊗ ∆1)

+1′
n−1 ⊗ (∆1∆1 ⊗ 1µ + 1µ ⊗ ∆1∆1 − ∆1 ⊗ ∆1 − ∆1 ⊗ ∆1︸ ︷︷ ︸

=:R

),where 1′
n−1 = Nz · N tr

z = diag(1, . . . , 1, 0). What we are really interested in is to give a 
losedformula for the expression hI(R(ξ, ξ) KS(ξ),KS(ξ)). As KS (ξ) =
∑

i,j(∆1)j,i(z
−1⊗(v

(0)
i )∗⊗v

(0)
j )and hI((z ⊗ v∗ ⊗ v)tr, (z ⊗ v∗ ⊗ v)) = 1n ⊗ h((v∗)tr, v∗) ⊗ h(vtr, v), we obtain that

hI(R(ξ, ξ) KS(ξ),KS(ξ)) =

hI
(
((z−1 ⊗ (v(0))∗ ⊗ v(0))(R + S)(∆1)

vec)tr, (z−1 ⊗ (v(0))∗ ⊗ v(0))(∆1)
vec
)

=

(S · (∆1)
vec)tr (1µ ⊗ 1µ)(∆1)

vec =
(
([[∆1, ∆1], ∆1])

vec
)tr

(∆1)
vec = Tr([[∆1, ∆1], ∆1] · ∆tr

1 )

= −Tr([∆1, [∆1, ∆1]] · ∆tr

1 ) = −Tr([∆1, ∆1], [∆1, ∆1]
tr
)The last 
omputation uses formula (3.7) and the fa
t that R · (∆1)

vec = [[∆1, ∆1], ∆1] = 0.It is well known that the 
urvature de
reases on subbundles, see, e.g., [S
h73, lemma (7.14)℄,thus we obtain the following estimate:
hIV (RIV (ξ, ξ) KS (ξ),KS(ξ)) ≤ hI(RI(ξ, ξ) KS(ξ),KS(ξ)).This implies that the holomorphi
 se
tional 
urvature hIV (RIV (ξ,ξ)ξ,ξ)

h2(ξ,ξ)
is smaller than or equal to

−Tr([∆1, ∆1], [∆1, ∆1]
tr
)Tr(∆1 · ∆tr

1 )2As ξ ∈ T hor
t (Ďpp

BL), i.e., KS (∂t1) ∈ GIV ⊂ GIII , the morphism KS(∂t1) : L → z−1L/L respe
tsthe V -�ltration, and [z KS (∂t1)] ∈ EndO
Ď

pp
BL

(L/zL) shifts the (indu
ed) V -�ltration by one. Byde�nition, ∆1 is the matrix representing [z KS (ξ)] ∈ EndC((L/zL)|(0,t)) with respe
t to the basis20



v, whi
h shows that it is nilpotent. Lemma 4.2 then proves that the value of −Tr([∆1,∆1],[∆1,∆1]
tr

)Tr(∆1·∆
tr
1 )2and thus of the holomorphi
 se
tional 
urvature on T hor

Ďpp
BL

\{zero se
tion} is bounded from aboveby a negative real number.Lemma 4.2. Fix µ ∈ N.1. Consider a matrix A ∈ M(µ × µ,C) whi
h is symmetri
 and nilpotent. Then
[A, A] = 0 ⇐⇒ A = 0.2. The map

ϕ :
{
A ∈ M(µ × µ,C)\{0} | A is symmetri
 and nilpotent} −→ R,

A 7→
−Tr([A, A] · [A, A]

tr)Tr(A · Atr
)2is bounded from above by a negative number.Proof. 1. ℜ(A) and ℑ(A) are real symmetri
 matri
es and thus diagonalizable. [A, A] = 0is equivalent to [ℜ(A),ℑ(A)] = 0 and to the simultaneous diagonalizability of ℜ(A) and

ℑ(A). In that 
ase also A is diagonalizable. As A is nilpotent, it vanishes.2. The image of the map ϕ does not 
hange when we restri
t ϕ to the subset
{A ∈ M(µ × µ,C) | A is symmetri
 and nilpotent and Tr (A · Atr

) = 1}.This set is 
ompa
t, its image is 
ontained in R−, ϕ is 
ontinuous so that the image is
ompa
t and therefore Im(ϕ) has a stri
tly negative upper bound.In the remaining part of this se
tion, we outline some rather dire
t 
onsequen
es of the above
urvature 
al
ulations. They are 
lose in spirit to the work of Gri�ths and S
hmid on the
lassifying spa
es of Hodge stru
tures ([GS69, GS75℄). The key tool is the following result. Letus 
all a holomorphi
 map φ : M → Ďpp
BL horizontal if dφ(TM) ⊂ φ∗T hor

Ďpp
BL

, where dφ : TM →
φ∗TĎpp

BL
is the derivative of φ.Proposition 4.3. 1. Write ∆ for the open unit dis
 in C and let φ : ∆ → Ďpp

BL be ahorizontal map. Denote by
ω∆ :=

1

(1 − |r|2)2
dr ∧ drthe (metri
) (1, 1)-form asso
iated to the Poin
aré metri
 on ∆ and similarly by ωh theform asso
iated to the metri
 h on TĎpp

BL
de�ned above. Then the following inequalityholds

cφ∗ωh ≤ ω∆for some c ∈ R>0 meaning that ω∆ − cφ∗ωh is a positive semi-de�nite form.21



2. Let now M be any 
omplex manifold and φ : M → Ďpp
BL a horizontal map. Then φ isdistan
e-de
reasing with respe
t to the (suitably normalized) distan
e dh on Ďpp

BL indu
edby h and the Kobayashi pseudo-distan
e on M .Proof. The proof of the �rst part is well-known and uses Ahlfors' lemma (see, e.g., [CMSP03,13.4℄). The se
ond part is an immediate 
onsequen
e.The following rather obvious lemma shows how to apply the above 
omputations to the studyof period mappings.Lemma 4.4. Let H underly a variation of pure polarized, regular singular TERP-stru
tureson M with 
onstant spe
tral numbers. Let π : M̃ → M be the universal 
over. We obtain aperiod mapping
φ : M̃ −→ Ďpp

BLby asso
iating to x̃ ∈ M̃ the TERP-stru
ture H|C×{π(x)} ∈ Ďpp
BL. Then we have dφ(TfM) ⊂

φ∗T hor
Ďpp

BL

, i.e., φ is horizontal.Proof. The pullba
k of the universal bundle (L,∇) under the map id×φ : C×M̃ → C×ĎBL isisomorphi
 to (H,∇). By de�nition, for a variation of TERP-stru
tures, the sheaf H is stableunder z∇X for any X ∈ (p′)−1TfM (where p′ : C× M̃ → M̃), and not only under zn∇X as it isthe 
ase for L. Therefore,
(id × φ)∗(z∇dφ(X))L = (z∇X)(id × φ)∗L ⊂ (id × φ)∗L.This implies thatKS (dφ(TfM)) is 
ontained inHomR(L, z−1L/L), so that by de�nition Im(dφ) ⊂

φ∗T hor
Ďpp

BL

.As an example of possible appli
ations we give the following rigidity result similar to the onefor variations of Hodge stru
tures.Corollary 4.5. Let (H, H ′
R
,∇, P, w) be a variation of pure polarized regular singular TERP-stru
tures on Cm with 
onstant spe
tral numbers. Then the variation is trivial, i.e., the 
orre-sponding map φ : Cm → Ďpp

BL is 
onstant or, in other words, H is stable under ∇.Proof. The last lemma and the se
ond point of proposition 4.3 show that the period map
φ : Cm → Ďpp

BL satis�es dCm(x, y) ≥ dh(φ(x), φ(y)), where dCm is the Kobayashi pseudo-distan
eon Cm and x, y ∈ Cm. It is known that dCm = 0, on the other hand, dh is a true distan
e, sothat φ is ne
essarily 
onstant.Let us �nish this paper by pointing out that the above 
onstru
tion has an a priori unpleasantfeature: the metri
 spa
e Ďpp
BL is not 
omplete in general. We will give a 
on
rete exampleshowing this phenomenon. We will not 
arry out all details of the 
omputations whi
h arerather lengthy.Consider the following topologi
al data: Let H∞

R
be a three-dimensional real ve
tor spa
e,

H∞ := H∞
R

⊗ C its 
omplexi�
ation and 
hoose a basis H∞ = ⊕3
i=1CAi su
h that A1 = A3and A2 ∈ H∞

R
. Moreover, 
hoose a real number α1 ∈ (−3/2,−1), put α2 := 0, α3 := −α122



and let M ∈ Aut(H∞
C

) be given by M(A) = A · diag(λ1, λ2, λ3) where A := (A1, A2, A3) and
λi := e−2πiαi . Putting

{0} = F 2
0 ( F 1

0 := CA1 ( F 0
0 := CA1 ⊕ CA2 = F−1

0 ( F−2
0 := H∞de�nes a sum of pure Hodge stru
tures of weights 0 and −1 on H∞

1 and H∞
6=1. A polarizingform is de�ned by

S(Atr, A) :=




0 0 γ
0 1 0
−γ 0 0


 ,where γ := −1

2πi
Γ(α1 + 2)Γ(α3 − 1). In parti
ular, we have for p = 1

ip−(−1−p)S(A1, A3) = (−1)iS(A1, A3) =
Γ(α1 + 2)Γ(α3 − 1)

2π
> 0and for p = 0

ip−(−p)S(A2, A2) = S(A2, A2) > 0so that F •
0 indeed indu
es a pure polarized Hodge stru
ture of weight −1 on H∞

6=1 = CA1 ⊕CA2and a pure polarized Hodge stru
ture of weight 0 on H∞
1 = CA2. As M is semi-simple andits eigenspa
es are one-dimensional, we have DPMHS = ĎPMHS = DPHS = ĎPHS = {F •

0 } and
F •

0 = F̃ •
0 .Let (H ′, H ′

R
,∇) be the �at holomorphi
 bundle on C∗×C with real �at subbundle 
orrespondingto (H∞, H∞

R
, M), and put si := zαiAi ∈ H′. A

ording to [HS07, formula (5.3), (5.4)℄, thepairing P : H′ ⊗ j∗H′ → OC∗×C is determined by the above 
hosen S, namely, P (str, s) :=

(δi+j,4)i,j∈{1,...,3}.It follows from the 
onstru
tion in [Her99, se
tion 5℄ that the 
lassifying spa
e DBL = ĎBL asso-
iated with the given topologi
al data and the spe
trum α1, α2, α3 is ĎBL
∼= C2 = Spe
 C[r, t],with the universal family of Brieskorn latti
es given by H = ⊕3

i=1OC3vi, where
v1 := s1 + rz−1s2 + r2

2
z−2s3 + tz−1s3,

v2 := s2 + rz−1s3,
v3 := s3.

Ĥ is pure outside of the real-analyti
 hypersurfa
e (1− ρ)4 − θ = 0, where ρ = 1
2
rr and θ = tt.The 
omplement has three 
omponents. Ĥ is polarized on two of them, those whi
h 
ontain

{(r, 0) | |r| <
√

2} and {(r, 0) | |r| >
√

2}, respe
tively. On the third 
omponent the metri
 on
p∗Ĥ has signature (+,−,−). So in this example Ďpp

BL has two 
onne
ted 
omponents, one ofthem is bounded while the other is not.If we restri
t the metri
 h on TĎpp
BL

to the tangent spa
e of {(r, 0) | |r| 6=
√

2}, then it is givenby
h(∂r, ∂r) = 2

1 + ρ2

(1 − ρ)4
.From this it is dire
tly evident that the distan
e de�ned by h on the unbounded 
omponent of

Ďpp
BL 
annot be 
omplete, as we have

h(∂r−1 , ∂r−1) = h(−r2∂r,−r2∂r) = 8ρ2 1 + ρ2

(1 − ρ)4

r→∞−→ 8 6= ∞.23



Comparing the situation to the one for 
lassifying spa
es of Hodge stru
ture (where the distan
eindu
ed by the Hodge metri
 on DPHS is known to be 
omplete due to the homogeneity of
DPHS ), it is 
lear that one needs to have a 
omplete metri
 spa
e as a possible target for periodmaps for variations of regular singular TERP-stru
tures. We are able to 
onstru
t su
h aspa
e, it is in fa
t a partial 
ompa
ti�
ation of Ďpp

BL, on whi
h the metri
 
an be extended andbe
omes 
omplete. However, this 
onstru
tion presents a number of te
hni
al di�
ulties andis somewhat beyond the s
ope of the present work. We will treat this and related questions ina subsequent paper.Referen
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