1. Sind die folgenden Aussagen wahr? Was ist jeweils ihr Gegenteil?

(a) $3 < 4 \land 4 < 3$,

(e) $\forall n \in \mathbb{N} \quad n^2 \in \mathbb{N}$,

(b) $3 < 4 \lor 4 < 3$,

- (f) $\forall x \in \mathbb{N} \quad \exists y \in \mathbb{N} : x = y + 1$,
- (c) $3 < 4 \land \neg (4 < 3)$,
- (g) $\forall x \in \mathbb{N} \quad \exists y \in \mathbb{N} : y = x + 1,$
- (d) $3 < 4 \lor Der Mond ist aus Käse, (h) <math>\exists y \in \mathbb{N} : \forall x \in \mathbb{N} : x = y + 1,$
- (i) Wenn meine Großmutter Räder hätte, wäre sie ein Autobus,
- (j) Für alle reellen Zahlen x gilt $3 < x \Leftrightarrow \neg(x < 3)$.
- 2. Beweisen Sie mithilfe der Wahrheitswerttabelle den Satz von der Kontraposition (Prinzip des indirekten Beweises): $(p \Rightarrow q) \iff (\neg q \Rightarrow \neg p)!$
- 3. Es gelte die folgende Implikation:

 $\{\text{Die Ware ist verdorben.}\} \Rightarrow \{\text{Die Ware darf nicht verkauft werden.}\}$

Welche Folgerungen können getroffen werden, wenn folgende Aussagen wahr sind:

- (a) Die Ware ist verdorben.
- (c) Die Ware darf verkauft werden.
- (b) Die Ware ist nicht verdorben.
- (d) Die Ware darf nicht verkauft werden.
- 4. Nutzen Sie die Implikation $a=b \Rightarrow a^2=b^2$ zur Lösung der Gleichung $\sqrt{x+2}-x=0!$
- 5. Sei M die Menge der Menschen und H die Menge der Hunde. Negieren Sie

 $\forall h \in H \quad \exists m \in M : (m \text{ füttert } h \land m \text{ führt } h \text{ Gassi}).$

- 6. Seien A und B zwei Aussagen (etwa "x>2" und "x>1" für reelle x). Schreiben Sie $A \Rightarrow B$ ohne den Folgepfeil nur mit den logischen Symbolen "nicht", "und" und "oder" $(\neg, \land \text{ und } \lor).$
- 7. Lösen Sie die folgenden Gleichungen

(a)
$$\lg \left(3^{\sqrt{4x+1}} - 2^{4-\sqrt{4x+1}}\right) - 2 = \frac{1}{4} \lg 16 - \sqrt{x+0.25} \lg 4.$$

(b) $\frac{\sqrt{a+x}}{\sqrt{a^4-x^4}} (a^2+x^2)^{\frac{1}{2}} = (a-x)^{-\frac{1}{2}}, \ a > 0.$

(b)
$$\frac{\sqrt{a+x}}{\sqrt{a^4-x^4}}(a^2+x^2)^{\frac{1}{2}} = (a-x)^{-\frac{1}{2}}, a > 0.$$

- 8. Zeigen Sie, dass folgende Zahlen irrational sind:
 - (a) $\sqrt{2}$, (b) **(HA)** $\sqrt{5}$!
- 9. Dies ist ein A4-Blatt. Es ist offenbar etwas höher als breit. Aber wie ist das Verhältnis von Höhe und Breite genau, und warum ist das so?
- 10. Man zeige, dass aus $p \in \mathbb{Q} \setminus \{0\}$ und $x \in \mathbb{R} \setminus \mathbb{Q}$ folgt $p + x, px \in \mathbb{R} \setminus \mathbb{Q}$.
- 11. Sind folgende Mengen beschränkt? Ermitteln Sie gegebenenfalls Supremum und Infimum!

- (a) (0,1), (b) $(-\infty,0],$ (c) $\{1+(-1)^n:n\in\mathbb{N}\},$ (d) $\{\frac{1}{n}:n\in\mathbb{N}\},$ (e) $\{x\in\mathbb{R}:x^2<2\},$ (f) $\{n^{(-1)^n}:n\in\mathbb{N}\},$ (Z) $\{\sqrt[n]{n}:n\in\mathbb{N}\}.$
- 12. Es seien die nichtleere Menge $A\subset\mathbb{R}$ nach unten beschränkt und $-A:=\{-a:a\in A\}$. Man zeige, dass dann $\sup(-A) = -\inf A$ gilt.
- 13. Die Mengen $A, B \subset \mathbb{R}$ seien nach oben beschränkt. Wir definieren

$$A + B = \{a + b : a \in A, b \in B\}.$$

Zeigen Sie, dass dann $\sup(A + B) = \sup A + \sup B$ gilt.

14. Es seien $r, z, w \in \mathbb{R}$ und r < zw. Dann existieren $p, q \in \mathbb{Q}$ mit p < z, q < w und r < pq.