Analysis I, 3. Hausaufgabe

Abgabetermin: 11./13.12.2013

WS 2013/14

http://www.tu-chemnitz.de/~peju/lehre/ana.html

- 1. Entscheiden Sie, ob folgende Funktionen $f: \mathbb{R} \longrightarrow \mathbb{R}$ injektiv, surjektiv, bijektiv sind:
 - (a) $x \mapsto |\sin x|$, (b) $x \mapsto x^2 2x$, (c) $x \mapsto \operatorname{sgn} x$, (d) $x \mapsto 2^{|x|}$.

Geben Sie gegebenenfalls maximale Teilmengen A und B von \mathbb{R} an, so dass $f:A\longrightarrow B$ bijektiv wird. Bestimmen Sie die inverse Funktion $f^{-1}:B\longrightarrow A$.

- 2. Es seien $f: X \longrightarrow Y$ eine Abbildung und $A_1, B_1 \subset Y$. Zeigen Sie: Aus $A_1 \subset B_1$ folgt $f^{-1}(A_1) \subset f^{-1}(B_1)$.
- 3. Für welche Zahlen $a, b, c, d \in \mathbb{C}$ ist die Abbildung $f : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $(z, w) \mapsto (az + b, cw + d)$ surjektiv, injektiv, bijektiv?
- 4. Es sei $f:A\longrightarrow B$ eine Abbildung. Zeigen Sie, dass $F:A\longrightarrow A\times B$, $x\mapsto (x,f(x))$ stets injektiv ist.
- 5. Sei $M = \{1, 2, 3\}$. Man finde zwei Funktionen $f: M \longrightarrow M$ und $g: M \longrightarrow M$, für die $f \circ g \neq g \circ f$ gilt. (Verwenden Sie die Permutationsschreibweise!)
- 6. Lösen Sie die mit (HA) gekennzeichneten Aufgaben der 4. Übung.
- 7. Die Mengen $A, B \subset \mathbb{R}$ seien beschränkt, und die Zahlen $\lambda, \mu \in \mathbb{R}$ seien fixiert. Ermitteln Sie $\sup(\lambda A + \mu B)$, wobei $\lambda A + \mu B = \{\lambda a + \mu b : a \in A, b \in B\}$.
- 8. Zeigen Sie, dass für beliebige $a,b \in \mathbb{R}$ mit a < b die Menge $\{q \in \mathbb{Q} : a < q < b\}$ abzählbar ist.
- 9. Sind folgende Mengen abzählbar
 - (a) $\mathbb{N} \times \mathbb{N}$, (b) $\mathbb{Q} \setminus \mathbb{Z}$, (c) die Menge der irrationalen Zahlen, (d) $(0,1) \subset \mathbb{R}$.
- 10. Geben Sie eine Bijektion zwischen folgenden gleichmächtigen Mengen an!
 - (a) [0,1), (0,1], (b) (0,1), [0,2], (c) $[0,1], (-\infty, \infty).$
- 11. Zeigen Sie: Aus $A \sim C$ und $B \sim D$ folgt $A \times B \sim C \times D$.
- 12. Beweisen Sie mit Hilfe der binomischen Formel, dass

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n, \quad n \in \mathbb{N}.$$