Fakultät für Mathematik

Mathematik III für Wirtschaftsingenieure

Prüfungsklausur

Allgemeine Hinweise: Jede Aufgabe ist auf einem gesonderten Blatt zu bearbeiten! Schreiben Sie alle wesentlichen Schritte auf dem Weg zum Ergebnis nachvollziehbar auf!

Zugelassene Hilfsmittel: gedruckte Formelsammlung, Vorlesungsskripts der 3 Semester ohne Anhänge, Taschenrechner

1. (4 Punkte)

Untersuchen Sie das Vektorfeld
$$\vec{u}(x, y, z) = \begin{pmatrix} x^2yz \\ xy^2z \\ -2xyz^2 \end{pmatrix}$$
 auf Quellen- und Wirbelfreiheit!

2. (5 Punkte)

Sei B die Vierecksfläche mit den Eckpunkten (0,0), (1,0), (1,1) und (0,2) in der x-y-Ebene. Berechnen Sie den Inhalt der Fläche $\{(x,y,z) \in \mathbb{R}^3 : z = 8 - x - 4y, (x,y) \in B\}$!

3. (7 Punkte)

Lösen Sie die Anfangswertaufgabe
$$y' - \frac{y}{2x+1} = 1$$
, $y(12) = 50$!

4. (7 Punkte)

Ein Produkt wird mit 2 verschiedenen Etikettierungen verkauft als Markenprodukt zum Preis von $p_1 \in$ und als Nonameprodukt zum Preis von $p_2 \in$, der Herstellungsaufwand beträgt in beiden Fällen 1 € pro Stück. Die von beiden Preisen abhängige Nachfrage betrage in 10000 Stück $N_1 = 33 - 6p_1 + p_2$ nach dem Markenprodukt und $N_2 = 3p_1 - 3p_2$ nach dem Nonameprodukt.

- a) Geben Sie den insgesamt zu erzielenden Gewinn als Funktion von p_1 und p_2 an!
- b) Wie sind die Preise p_1 und p_2 zu wählen, damit maximaler Gewinn erzielt wird?

Die über dem Intervall $-\pi < t \le \pi$ durch $g(t) = \begin{cases} 1 - \cos t, & -\pi < t < 0 \\ \cos t - 1, & 0 \le t \le \pi \end{cases}$ definierte Funktion werde periodisch auf die gesamte reelle Achse fortgesetzt. Die so entstandene Funktion soll überall mit g(t) bezeichnet werden.

5. (11 Punkte)

- a) Skizzieren Sie die Funktion g(t)!
- b) Entwickeln Sie die Funktion g(t) in eine Fourierreihe!
- c) Gegen welche Funktion konvergiert die Fourierreihe?

Hinweis:
$$\sin x \cos y = \frac{\sin(x+y) + \sin(x-y)}{2}$$

6. (6+4 Punkte)

- a) Kann die Funktion g(t) an der Stelle $t_0 = 0$ bzw. an der Stelle $t_0 = \pi/4$ in eine Taylorreihe entwickelt werden? Führen Sie die Entwicklung aus, wenn das möglich ist!
- b) In welcher Situation wäre die Taylorentwicklung aus a) gegenüber der Fourierentwicklung aus Aufgabe 5 zu bevorzugen?
- c) (**Zusatz:**) Für welche t konvergiert die ermittelte Taylorreihe? Wann liegt nach dem Satz von Taylor Konvergenz gegen g(t) vor?

Hinweis: Da $\frac{k(k+1)}{2}$ genau dann gerade ist, wenn k bei Division durch 4 den Rest 0 oder 3 lässt, ist für eine zusammengefasste Darstellung der Reihe die Verwendung des Ausdrucks $(-1)^{\frac{k(k+1)}{2}}$ nützlich.