Mathematik II für Wirtschaftsinformatiker und -ingenieure

Prüfungsklausur

1. (10 Punkte) Die Anzahl z der Fahrzeuge, die eine bestimmte Straße stündlich passieren können, lasse sich aus der mittleren Geschwindigkeit v in m/s bei einer mittleren Fahrzeuglänge von 4 m nach folgender Formel berechnen:

$$z(v) = 1000 \frac{v}{4 + \frac{v}{4} + \frac{v^2}{12}}.$$

- a) Bei welcher Durchschnittsgeschwindigkeit in km/h ist die Durchlassfähigkeit der Straße am größten?
- b) Die Straße werde durchschnittlich mit $v_0 = 12\,\mathrm{m/s}$ passiert. Approximieren Sie z um v_0 durch ein Taylorpolynom 2. Grades!
- 2. (10 Punkte) Berechnen Sie folgende Integrale:
 - a) $\int (2+3x)^2 dx$,

 - b) $\int x \cos 5x \, dx$, c) $\int \frac{5x 1}{x^2 + x 12} \, dx$!
- **3.** (8 Punkte) Gegeben sei die Kurve $\vec{x}(t) = \begin{pmatrix} t \sin t \\ \frac{2}{3}\sqrt{2t^3} \\ 2 t \cos t \end{pmatrix}, 1 \le t \le 5.$
 - a) Berechnen Sie die Länge der Kurve!
 - b) Ermitteln Sie die Gleichung der Tangente an die Kurve im Punkt $\vec{x}(\pi)$!
- **4.** (12 Punkte) Für x > 0, y > 0 sei die Funktion $f(x,y) = x y + \ln \frac{y}{x}$ definiert.
 - a) Berechnen Sie Gradient und Hessematrix dieser Funktion!
 - b) Hat die Funktion globale oder lokale Extrema bzw. Sattelpunkte?
 - c) Ermitteln Sie die Gleichung der Tangentialebene im Punkt (e, 1) an z = f(x, y)!
 - d) Sei \vec{a} ein Vektor in gegenüber der positiven x-Achse im positiven Sinne um 60° gedrehter Richtung. Berechnen Sie die Richtungsableitung $\frac{\partial f}{\partial \vec{a}}(\mathbf{e},1)$!
 - e) In welche Richtung wächst f(x,y) ausgehend von (x,y) = (e,1) am stärksten?