Höhere Mathematik I.2

Aufgabenkomplex 5: Hauptachsentransformation, Differenzialgleichungssysteme, Lineare Optimierungsaufgaben

Letzter Abgabetermin: 5. Juli 2012

(in Übung oder Briefkasten bei Zimmer Rh. Str. 39/712)

Bitte die Arbeiten deutlich mit "Höhere Mathematik I.2, Aufgabenkomplex 5" kennzeichnen und die Übungsgruppe angeben, in der die Rückgabe erfolgen soll!

Sämtliche Aufgaben sind ohne elektronische Hilfsmittel zu lösen!

- 1. In der kartesischen Koordinatenebene sei die Kurve $21x^2 + 8\sqrt{3}xy + 13y^2 = 225$ gegeben.
 - a) Führen Sie die Hauptachsentransformation durch!
 - b) Um was für eine Kurve handelt es sich? Skizzieren Sie sie in dem transformierten Koordinatensystem!
 - c) Um welchen Winkel werden bei der Hauptachsentransformation die Koordinatenachsen gedreht? Skizzieren Sie die Kurve im Ausgangskoordinatensystem!
- 2. Ermitteln Sie die allgemeine reelle Lösung des Differenzialgleichungssystems $\dot{x} = y$ $\dot{y} = -4x$!
- 3. Lösen Sie die lineare Optimierungsaufgabe $-x_1+2x_2\to \max \\ -x_1+x_2\le 2 \\ x_1+x_2\le 10 \\ x_1\ge 0,\ x_2\ge 0$
 - a) auf grafischem Wege und
 - b) mit dem Simplexverfahren!

Zeichen Sie die bei dem Simplexalgorithmus durchlaufenen Basislösungen in das Bild der grafischen Lösung ein!

- 4. In einer Werkstatt werden kleine und große Regale gefertigt. Zur Herstellung eines kleinen Regals wird 1 Stunde benötigt, dabei entstehen Kosten in Höhe von 50 € und beim Verkauf ist ein Gewinn von 20 € zu erzielen. Ein großes Regal wird in 4 Stunden hergestellt, die Herstellungskosten betragen 300 € und der zu erzielende Verkaufsgewinn 130 €. Es stehen maximal 100 Stunden zur Verfügung, die Herstellungskosten sollen insgesamt 6000 € nicht überschreiten.
 - a) Stellen Sie das mathematische Modell für die Gewinnmaximierung unter diesen Bedingungen auf!
 - b) Lösen Sie die lineare Optimierungsaufgabe mittels Simplexverfahren! Wie groß ist der maximale Gewinn?
 - c) Welche Bedeutung haben die Werte der Schlupfvariablen in der optimalen Lösung?
- 5. Bestimmen Sie mit dem Simplexverfahren die optimale Lösung und den optimalen Zielfunktionswert der Optimierungsaufgabe

$$x_1 + 2x_2 + 3x_3 \longrightarrow \min$$

 $2x_1 + x_2 + x_3 \ge 30$
 $x_1 + 2x_2 + 2x_3 \le 20$
 $x_1, x_2, x_3 \ge 0$!

Aufgabenkomplex 5: Hauptachsentransformation, Differenzialgleichungssysteme, Lineare Optimierungsaufgaben

Letzter Abgabetermin: 5. Juli 2012

- 1. In der kartesischen Koordinatenebene sei die Kurve $21x^2 + 8\sqrt{3}xy + 13y^2 = 225$ gegeben.
 - a) Führen Sie die Hauptachsentransformation durch!
 - b) Um was für eine Kurve handelt es sich? Skizzieren Sie sie in dem transformierten Koordinatensystem!
 - c) Um welchen Winkel werden bei der Hauptachsentransformation die Koordinatenachsen gedreht? Skizzieren Sie die Kurve im Ausgangskoordinatensystem!

a)
$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 21 & 4\sqrt{3} \\ 4\sqrt{3} & 13 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 225$$

$$\begin{vmatrix} 21 - \lambda & 4\sqrt{3} \\ 4\sqrt{3} & 13 - \lambda \end{vmatrix} = (21 - \lambda)(13 - \lambda) - (4\sqrt{3})^2 = 273 - 34\lambda + \lambda^2 - 48 = \lambda^2 - 34\lambda + 225 = 0,$$

$$\lambda_{1/2} = 17 \pm \sqrt{289 - 225} = 17 \pm \sqrt{64} = \begin{cases} 25 \\ 9 \end{cases}$$
EV zu EW $\lambda_1 = 25$:
$$-4 \quad 4\sqrt{3}$$

$$\frac{4\sqrt{3} \quad -12}{1 \quad -\sqrt{3}}$$

$$0 \quad 0$$
EV $\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$, normierter EV $\frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$

EV zu EW
$$\lambda_1 = 25$$
: $-4 4\sqrt{3} 4\sqrt{3} -12$

EV
$$\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$$
, normierter EV $\frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$

EV zu EW
$$\lambda_2 = 9$$
: $12 \quad 4\sqrt{3}$

EV zu EW
$$\lambda_2 = 9$$
: $12 \quad 4\sqrt{3}$

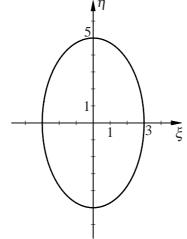
$$\frac{4\sqrt{3} \quad 12}{\sqrt{3} \quad 1}$$

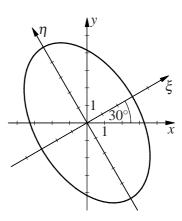
$$0 \quad 0$$
EV $\left(\begin{array}{c} \sqrt{3} \\ \sqrt{3} \end{array}\right)$, normierter EV $\frac{1}{2}$ $\left(\begin{array}{c} \sqrt{3} \\ \sqrt{3} \end{array}\right)$
Hauptachsentransformation: $\left(\begin{array}{c} x \\ \end{array}\right) = V \left(\begin{array}{c} \xi \\ \end{array}\right) = \frac{1}{2} \left(\begin{array}{c} \sqrt{3} \\ -1 \\ \end{array}\right) \left(\begin{array}{c} \xi \\ \end{array}\right)$

Hauptachsentransformation:
$$\begin{pmatrix} x \\ y \end{pmatrix} = V \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$

$$(x \ y) \begin{pmatrix} 21 & 4\sqrt{3} \\ 4\sqrt{3} & 13 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (\xi \quad \eta) \begin{pmatrix} 25 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} = 25\xi^2 + 9\eta^2 = 225$$

b)
$$\frac{\xi^2}{9} + \frac{\eta^2}{25} = 1$$
, $\frac{\xi^2}{3^2} + \frac{\eta^2}{5^2} = 1$: Ellipse mit Mittelpunkt $(0,0)$ und Halbachsen 3 und 5





c)
$$V = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
, $\cos \alpha = \frac{\sqrt{3}}{2}$, $\sin \alpha = \frac{1}{2}$, Drehwinkel also $\alpha = \frac{\pi}{6} = 30^{\circ}$

Bild oben rechts

2. Ermitteln Sie die allgemeine reelle Lösung des Differenzialgleichungssystems $\dot{x}=y$ $\dot{y}=-4x$!

Lösung:

$$\begin{vmatrix} -\lambda & 1 \\ -4 & -\lambda \end{vmatrix} = \lambda^2 + 4 = 0, \quad \lambda_{1/2} = \pm 2i$$

Am einfachsten lässt sich die Lösung des homogenen Differenzialgleichungssystems durch Berechnung der einen aus der anderen Komponente bestimmen. Wegen $e^{\pm 2it} = \cos 2t \pm i \sin 2t$ muss x(t) die Form $x(t) = C \sin 2t + D \cos 2t$ haben. Nach der ersten Gleichung des homogenen Differenzialgleichungssystems gilt dann $y(t) = \dot{x}(t) = 2C \cos 2t - 2D \sin 2t$.

Also lautet die allgemeine Lösung des gegebenen homogenen Differenzialgleichungssystems

$$\vec{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = C \begin{pmatrix} \sin 2t \\ 2\cos 2t \end{pmatrix} + D \begin{pmatrix} \cos 2t \\ -2\sin 2t \end{pmatrix}.$$

Man kann auch die Eigenvektoren und aus diesen zunächst die allgemeine komplexe Lösung des Differenzialgleichungssystems ermitteln:

allgemeine komplexe Lösung des homogenen Dgl.systems:

$$\vec{x}_{\text{hom}}(t) = C \begin{pmatrix} 1 \\ 2i \end{pmatrix} e^{2it} + D \begin{pmatrix} 1 \\ -2i \end{pmatrix} e^{-2it}, \quad C, D \text{ beliebig komplex}$$

Für das reelle Differenzialgleichungssystem werden aber reelle Lösungen gesucht. Deshalb muss ermittelt werden, wie die komplexen Koeffizienten C und D zu wählen sind, damit reelle Lösungen entstehen.

$$\begin{pmatrix} 1 \\ 2i \end{pmatrix} e^{2it}$$
 und $\begin{pmatrix} 1 \\ -2i \end{pmatrix} e^{-2it}$ sind zueinander konjugiert komplex. Die Summe einer komplexen Zahl und der zu ihr konjugiert komplexen Zahl ist reell. Wählt man deshalb nun auch noch C und D konjugiert komplex zueinander, d.h. $C = A + Bi$, $D = \overline{C} = A - Bi$, so entsteht eine reelle Lösung:

$$\vec{x}(t) = (A+Bi) \begin{pmatrix} 1\\2i \end{pmatrix} e^{2it} + (A-Bi) \begin{pmatrix} 1\\-2i \end{pmatrix} e^{-2it}$$

$$= \begin{pmatrix} A+Bi\\2Ai-2B \end{pmatrix} (\cos 2t + i \sin 2t) + \begin{pmatrix} A-Bi\\-2Ai-2B \end{pmatrix} (\cos 2t - i \sin 2t)$$

$$= \begin{pmatrix} A\cos 2t + Ai \sin 2t + Bi \cos 2t - B\sin 2t + A\cos 2t - Ai \sin 2t - Bi \cos 2t - B\sin 2t \\ 2Ai \cos 2t - 2A\sin 2t - 2B\cos 2t - 2Bi \sin 2t - 2Ai \cos 2t - 2A\sin 2t - 2B\cos 2t + 2Bi \sin 2t \end{pmatrix}$$

$$= \begin{pmatrix} 2A\cos 2t - 2B\sin 2t \\ -4A\sin 2t - 4B\cos 2t \end{pmatrix} = 2A \begin{pmatrix} \cos 2t \\ -2\sin 2t \end{pmatrix} - 2B \begin{pmatrix} \sin 2t \\ 2\cos 2t \end{pmatrix} = D \begin{pmatrix} \cos 2t \\ -2\sin 2t \end{pmatrix} + C \begin{pmatrix} \sin 2t \\ 2\cos 2t \end{pmatrix},$$

wobei der Einfachheit halber die beliebigen reellen Konstanten wieder mit C und D bezeichnet wurden. Dabei ist jetzt C = -2B und D = 2A.

3. Lösen Sie die lineare Optimierungsaufgabe
$$-x_1 + 2x_2 \rightarrow \max$$

 $-x_1 + x_2 \le 2$
 $x_1 + x_2 \le 10$

$$x_1 + x_2 \le 10$$

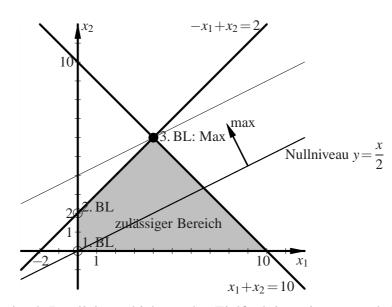
 $x_1 \ge 0, x_2 \ge 0$

- a) auf grafischem Wege und
- b) mit dem Simplexverfahren!

Zeichen Sie die bei dem Simplexalgorithmus durchlaufenen Basislösungen in das Bild der grafischen Lösung ein!

Lösung:

a)



Maximierung erfolgt durch Parallelverschiebung des Zielfunktionsniveaus nach links oben. Der zulässige Bereich wird verlassen im Schnittpunkt der Geraden $-x_1+x_2=2$ und $x_1+x_2=10$, das ist der Punkt (4,6). Also wird das Maximum für $x_1=4$, $x_2=6$ angenommen, der maximale Zielfunktionswert beträgt $-4+2\cdot 6=8$.

$$-x_1 + 2x_2 \longrightarrow \max$$

$$-x_1 + x_2 + \mathbf{u_1} = 2$$

$$x_1 + x_2 + \mathbf{u_2} = 10$$

$$x_1, x_2, u_1, u_2 \ge 0$$

		x_1	x_2	u_1	u_2		
BV	c_{B}	-1	2	0	0	$x_{\rm B}$	θ
u_1	0	-1	1	1	0	2	2
u_2	0	1	1	0	1	10	10
		1	-2	0	0	0	
x_2	2	-1	1	1	0	2	_
u_2	0	2	0	-1	1	8	4
		-1	0	2	0	4	
x_2	2	0	1	$\frac{1}{2}$	$\frac{1}{2}$	6	
x_1	-1	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	4	
		0	0	$\frac{3}{2}$	$\frac{1}{2}$	8	
		•		_	_	•	•

$$x_1 = 0, x_2 = 0, u_1 = 2, u_2 = 10$$

2. Basislösung:

$$x_1 = 0, x_2 = 2, u_1 = 0, u_2 = 8$$

3. Basislösung:

$$x_1 = 4, x_2 = 6, u_1 = 0, u_2 = 0$$

Alle Optimalitätsindikatoren sind nichtnegativ, die für die Nichtbasisvariablen positiv. Also liegt bei $x_1 = 4$, $x_2 = 6$ das eindeutige Maximum, der maximale Zielfunktionswert ist 8.

- 4. In einer Werkstatt werden kleine und große Regale gefertigt. Zur Herstellung eines kleinen Regals wird 1 Stunde benötigt, dabei entstehen Kosten in Höhe von 50 € und beim Verkauf ist ein Gewinn von 20 € zu erzielen. Ein großes Regal wird in 4 Stunden hergestellt, die Herstellungskosten betragen 300 € und der zu erzielende Verkaufsgewinn 130 €. Es stehen maximal 100 Stunden zur Verfügung, die Herstellungskosten sollen insgesamt 6000 € nicht überschreiten.
 - a) Stellen Sie das mathematische Modell für die Gewinnmaximierung unter diesen Bedingungen auf!
 - b) Lösen Sie die lineare Optimierungsaufgabe mittels Simplexverfahren! Wie groß ist der maximale Gewinn?
 - c) Welche Bedeutung haben die Werte der Schlupfvariablen in der optimalen Lösung?

Lösung:

a) x_1 Anzahl herzustellende kleine Regale, x_2 Anzahl herzustellende große Regale

Gewinn: $20x_1 + 130x_2 \longrightarrow \max$ Zeit: $x_1 + 4x_2 \le 100$ Herstellungskosten: $50x_1 + 300x_2 \le 6000$

Nichtnegativität: $x_1, x_2 \ge 0$, außerdem Ganzzahligkeit

b) Das Modell lässt sich durch Division der Gewinnfunktion durch 10 und der Ungleichung für die Kosten durch 50 vereinfachen zu $z' = z/10 = 2x_1 + 13x_2 \longrightarrow \max$

$$\begin{array}{cccc} x_1 + 6x_2 & & & & \\ x_1 + 4x_2 & \leq & 100 \\ x_1 + 6x_2 & \leq & 120 \\ x_1, & x_2 & \geq & 0 \end{array}$$

die Normalform lautet

$$z' = 2x_1 + 13x_2 \longrightarrow \max$$

$$x_1 + 4x_2 + u_1 = 100$$

$$x_1 + 6x_2 + u_2 = 120$$

$$x_1, x_2, u_1, u_2 \ge 0$$
.

Simplexschema:

		x_1	x_2	u_1	u_2		
BV	c_B	2	13	0	0	x_B	θ
u_1	0	1	4	1	0	100	25
u_2	0	1	6	0	1	120	20
		-2	-13	0	0	0	
u_1	0	$\frac{1}{3}$	0	1	$-\frac{2}{3}$	20	
x_2	13	$\frac{1}{6}$	1	0	$\frac{1}{6}$	20	
		<u>1</u> 6	0	0	<u>13</u>	260	

Alle Optimalitätsindikatoren sind nichtnegativ, für die Nichtbasisvariablen positiv. Damit liegt das eindeutige Optimum bei $x_1^*=0$, $x_2^*=20$, $u_1^*=20$, $u_2^*=0$, $z'^*=260$, $z^*=10z'^*=2600$. Der maximal mögliche Gewinn liegt bei $2600 \in$, er wird erzielt, wenn kein kleines und 20 große Regale gefertigt werden.

Ohne die zahlenmäßige Vereinfachung des Modells lautet das Simplexschema:

		x_1	x_2	u_1	u_2		
BV	CB	20	130	0	0	χ_B	θ
u_1	0	1	4	1	0	100	25
u_2	0	50	300	0	1	6000	20
		-20	-130	0	0	0	
u_1	0	$\frac{1}{3}$	0	1	$-\frac{1}{75}$	20	
x_2	130	$\frac{1}{6}$	1	0	$\frac{1}{300}$	20	
		<u>5</u> 3	0	0	$\frac{13}{30}$	2600	

- c) $u_1^* = 20$ in der optimalen Lösung bedeutet, dass 20 der maximal möglichen 100 Stunden nicht benötigt werden, $u_2^* = 0$, dass das Herstellungskostenlimit von $6000 \in \text{komplett}$ ausgeschöpft wird
- **5.** Bestimmen Sie mit dem Simplexverfahren die optimale Lösung und den optimalen Zielfunktionswert der Optimierungsaufgabe

$$\begin{array}{cccc} x_1 + 2x_2 + 3x_3 & \longrightarrow & \min \\ 2x_1 + x_2 + x_3 & \geq & 30 \\ x_1 + 2x_2 + 2x_3 & \leq & 20 \\ x_1, x_2, x_3 & \geq & 0 \end{array}$$

Lösung:

Normalform:

$$z' = -z = -x_1 - 2x_2 - 3x_3 \longrightarrow \max$$

$$2x_1 + x_2 + x_3 - u_1 = 30$$

$$x_1 + 2x_2 + 2x_3 + u_2 = 20$$

$$x_1, x_2, x_3, u_1, u_2 \ge 0$$

Hilfsaufgabe:

		x_1	x_2	x_3	u_1	u_2	v_1		
BV	c_B	0	0	0	0	0	-1	x_B	θ
v_1	-1	2	1	1	-1	0	1	30	15
u_2	0	1	2	2	0	1	0	20	20
		-2	-1	-1	1	0	0	-30	
x_1	0	1	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	15	
u_2	0	0	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	5	
		0	0	0	0	0	1	0	

Alle Optimalitätsindikatoren sind nichtnegativ, für die Nichtbasisvariablen positiv, somit ist das eindeutige Optimimum $z^* = -z'^* = 15$ erreicht für $x_1^* = 15$, $x_2^* = x_3^* = 0$.