Höhere Mathematik I.2

Übung 5: l'Hospitalsche Regel, Elastizität, zweite Ableitungen

- 1. Wenden Sie die l'Hospitalsche Regel auf folgende Grenzwerte an:
 - a) $\lim_{x\to 0} \frac{\sin 2x}{3x}$, b) $\lim_{x\to \pi} (\pi x) \tan \frac{x}{2}$, c) $\lim_{x\to \infty} \frac{x^2}{e^x}$, d) $\lim_{x\to 0} \frac{\tan x x}{\sin x x}$, e) $\lim_{x\to \infty} \frac{x + \cos x}{x + \sin x}$, f) $\lim_{x\to 0} \left(\frac{1}{x \sin x} \frac{1}{x^2}\right)$!
- 2. Die vom Preis p abhängige Nachfragefunktion eines Produktes laute $N(p) = \frac{20\,000}{2p+3}$. Ermitteln Sie für einen Preis von p=2 die Auswirkungen einer Preiserhöhung von 1 % mit Hilfe der Elastizität sowie exakt!
- 3. a) Wie errechnet sich der Radius einer Kugel (Körper), wenn Masse und Dichte bekannt sind?
 - b) Eine Kugel besteht aus einer Metalllegierung mit einer Dichte von (8 ± 0.1) g/cm³ und wiegt 2 kg. Schätzen Sie den absoluten und den relativen Fehler bei der Bestimmung des Radius aus diesen Angaben ab!
- 4. Wie in Aufgabe 1 aus Übung 3 wird ein Fahrzeug betrachtet, dass sich nach $s(t) = 20 + 10t + 100t^2 30t^3$ bewegt. Dabei wird der Weg *s* in Kilometern, die Zeit *t* in Stunden gemessen.
 - a) Berechnen Sie die Beschleunigung in Abhängigkeit von der Zeit! Ermitteln Sie ihren Zahlwert in km/h^2 sowie in m/s^2 zum Zeitpunkt t=1!
 - b) Von welchem Zeitpunkt an wird das Fahrzeug langsamer?
 - c) Von wann an fährt das Fahrzeug rückwärts?
- 5. Untersuchen Sie das Verhalten der Funktion $f(x) = \frac{\sin x}{x}$ und ihrer ersten und zweiten Ableitung für $x \to 0$!