Aufgabe 25.5

Lösen Sie die folgenden Aufgaben mit MATLAB. Protokollieren Sie Ihr Vorgehen in einer diary-Datei und speichern Sie erstellte Plots ab.

1. Es sei
$$A = \begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$
 (vgl. Aufgabe 6.173). Bestimmen Sie die inverse Matrix von A .

2. Bestimmen Sie die Determinante der Matrix aus Aufgabe Aufgabe 6.185 für

a)
$$a = 1, b = 1, c = 1, d = 1$$

b)
$$a = 5, b = 4, c = 3, d = 2$$

c)
$$a = -2$$
, $b = 0$, $c = 2$, $d = 4$

d)
$$a = 6, b = 4, c = 4, d = 6.$$

3. Zeichnen Sie die Kanten des von den drei Vektoren $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ und $\vec{a} \times$

 \vec{b} aufgespannten Parallelepipedes. Versuchen Sie, die Ansicht so zu wählen, dass die Orthogonalität von \vec{a} zu $\vec{a} \times \vec{b}$ und von \vec{b} zu $\vec{a} \times \vec{b}$ zu erkennen ist.

- 4. a) Stellen Sie die Ebene aus Aufgabe 7.105, die drei gegebenen Punkte A, B, C sowie das von diesen erzeugte Dreieck in einem Plot geeignet dar.
 - b) Projizieren Sie die Vektoren \overrightarrow{AC} und \overrightarrow{BC} in die Ebene (d.h., berechenen Sie die zum Normalenvektor senkrechte Komponente). Zeichnen Sie die projizierten Vektoren in die Ebene ein (angesetzt am Punkt A bzw. B).
 - c) Berechnen Sie den Lotfußpunkt von C bzgl. der gegebenen Ebene. Zeichnen Sie den Lotfußpunkt und die Strecke vom Punkt zum Lotfußpunkt. Berechnen Sie auch den Abstand des Punktes zur Ebene.
 - d) Bestimmen Sie den in Aufgabe 7.105 gefragten Flächeninhalt.

Öffnen Sie die erstellte diary-Datei (vorher mit \gg diary off die Protokollierung abschließen) und entfernen Sie ggf. überflüssige Zeilen (z.B. Fehleingaben). Drucken Sie anschließend die bearbeitete diary-Datei und eventuell angefertigte Plots möglichst sparsam (d.h. nach Möglichkeit duplex, mehrere Seiten pro Blatt, kleine Schriftgröße) aus.

Aufgabe 25.5

Hinweise zur MATLABaufgabe

Inverse Matrix, Determinante und Kreuzprodukt

In MATLAB kann die inverse Matrix mit dem Befehl inv und die Determinante mit dem Befehl det berechnet werden. Beispiel:

```
\gg A=[1, -1, 2; -4, 2, 0; 1, 0, 3]
\gg inv(A)
\gg det(A)
```

Für die Überprüfung von händisch ausgerechneten inversen Matrizen mit MATLAB ist es oft günstig, zusätzlich

```
≫ det(A)*inv(A)
zu berechnen.
```

Das Kreuzprodukt zweier Vektoren lässt sich mit dem Befehl cross und das Skalarprodukt mit dem Befehl dot bestimmen. Beispiel:

```
\gg cross([1; -1; 2], [-4; 2; 0])
\gg dot([1; -1; 2], [-4; 2; 0])
```

Darstellen von Punkten

Ein einzelner Punkt im Raum kann durch einen einfachen plot3-Befehl dargestellt werden. Beispielsweise wird durch

```
>> plot3(1,1,1)
der Punkt mit den Koordinaten (1)
1 gezeichnet. Die Darstellung lässt sich durch
>> plot3(1,1,1,'Marker','.','MarkerSize',20,'Color','red')
>> grid on
verdeutlichen.
```

Aufgabe 25.5

Sung

nächsten Seiten nachbereitete diary-Datei (Kommentare durch 0/0 gekennzeichnet) und Plots auf dieser und den

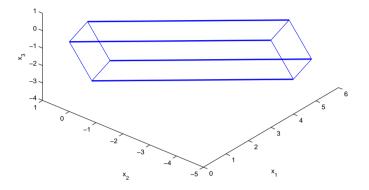
```
0
                                                                                             4
                                                                                                        2
                                                                                             2
% Matrix aufstellen
                                                                            0
                                                                                  0
A=[1 \ 3 \ 2; \ 1 \ -1 \ 2; \ 1 \ 2 \ -1]
                                                                                  0
                                                                                                        3
                                                                                        4
                                                                                             1
                                                                                        0
                                                                                             3
                                                                                                        0
A =
                                                                            0
                                                                                  0
                                                                            5
                                                                                  0
    1
         -1
             2
                                                                        Determinante =
                                                                            0
% Matrix invertieren
                                                                        B =
                                                                            5
                                                                                  0
inv(A)
                                                                                       -2
                                                                                             0
                                                                                                        4
ans =
  -0.2500
           0.5833
                      0.6667
                                                                            0
                                                                                  0
                                                                                       0
                                                                                             2
                                                                                                        0
   0.2500
           -0.2500
                     0
                                                                                  0
                                                                                       0
                                                                                             1
                                                                                             3
   0.2500
           0.0833
                    -0.3333
                                                                            0
                                                                                  0
                                                                                       0
                                                                                                        0
                                                                            -2
                                                                                  0
                                                                                       0
% Vergleich mit dem von Hand errechneten Ergebnis
                                                                        Determinante =
                                                                            0
det(A)
ans =
   12
                                                                        B =
det(A)*inv(A)
                                                                                             4
                                                                                  0
                                                                                             2
                                                                                                        0
ans =
                                                                            0
   -3
                                                                            5
                                                                                  0
                                                                                       4
         -3
                                                                                       n
                                                                                             3
                                                                                                        0
    3
               0
                                                                                  0
                                                                            0
                                                                                  0
              -4
                                                                            6
                                                                                       Ω
                                                                        Determinante =
% Aufgabe 2
                                                                        % Aufgabe 3
a=[1, 5, -2, 6];
b=[1, 4, 0, 4];
c=[1, 3, 2, 4];
                                                                        % Vektoren aufstellen
d=[1, 2, 4, 6];
                                                                        a=[1; 0; -3]
for i=1:4
                                                                        a =
   % Matrix aufstellen
                                                                            1
   B=[ 5 0 0 1 5 4;
                                                                            0
          3 a(i) b(i) c(i) d(i);
                                                                            -3
       0 0 0 2 4 0;
5 0 b(i) 1 2 c(i);
                                                                        b=[2; 1; -1]
       0 0 0 3 d(i) 0;
                                                                        b =
      a(i) 0 0 1 5 4]
                                                                            2
    % Determinante berechnen
    Determinante=det(B)
                                                                            -1
end;
                                                                        % Kreuzprodukt berechnen
                                                                        c=cross(a,b)
    5
          0
               0
                                                                        C =
          3
                                                                            3
               1
                                Ω
    Ω
          Ω
               0
                     2
                          4
                                                                            -5
          0
               1
                    1
                          2
                                1
                                                                            1
    0
          0
               0
                     3
                          1
                                0
    1
         0
               0
                                4
                                                                        % Vektoren zeichnen
Determinante =
                                                                        figure;
  480
                                                                        hold on;
```

```
% Mit p=...; q=...; plot3([p(1), q(1)], [p(2), q(2)], [p(3), q(3)])
% wird die Verbindungsstrecke vom Punkt p zum Punkt g gezeichnet.
% Dies wird jetzt für alle 12 Kanten ausgeführt:
% "unteres" (i=0) und "oberes" (i=1) Parallelogramm
for i=0:1
    p=i*c; q=i*c+a; plot3([p(1), q(1)], [p(2), q(2)], [p(3), q(3)])
    p=i*c+a; q=i*c+a+b; plot3([p(1), q(1)], [p(2), q(2)], [p(3), q(3)])
   p=i*c+a+b; q=i*c+b; plot3([p(1), q(1)], [p(2), q(2)], [p(3), q(3)])
   p=i*c+b; q=i*c; plot3([p(1), q(1)], [p(2), q(2)], [p(3), q(3)])
end:
% senkrechte Verbindung zwischen "unterem" und "oberem" Parallelogramm
% (zur Verdeutlichung fett gezeichnet)
0=[0 \ 0 \ 0]:
p=0; q=c; plot3( [p(1),q(1)],[p(2),q(2)],[p(3),q(3)], 'LineWidth',2 )
p=a; q=c+a; plot3( [p(1),q(1)],[p(2),q(2)],[p(3),q(3)], 'LineWidth',2 )
p=a+b; q=c+a+b; plot3([p(1),q(1)],[p(2),q(2)],[p(3),q(3)], 'LineWidth',2)
p=b; q=c+b; plot3([p(1),q(1)],[p(2),q(2)],[p(3),q(3)], 'LineWidth',2)
% Achsen beschriften
xlabel('x 1')
vlabel('x 2')
zlabel('x 3')
% ggf. von Hand in gewünschte Lage drehen,
% mit der folgenden Anweisung wird Betrachterstandpunkt vorgegeben:
view(-50,50)
% Titel setzen
viewparam=get(gca(),'view');
title(['Darstellung des von den Vektoren a, b und a x b aufgespannten
Paralellepipedes mit view(',num2str(viewparam(1)),',',num2str(viewparam(2)),
')']);
print -depsc ak5 zusatz 3.eps
```

```
% Aufgabe 4
% Punkte eingeben
A = [2; 0; 0]
Δ =
     0
     0
B = [0; 3; 0]
B =
    Ω
     3
     0
C=[24; 16; 14]
    24
    16
    14
% Normalenvektor der Ebene eingeben
n=[3; 2; 1]
n =
     3
    2
    1
figure; hold on;
% Zeichne Ebene 3x+2y+z=6 durch Punkte [6-3-6], [-2\ 9-6] und [-2\ -3\ 18]
patch([6 -2 -2],[-3 9 -3],[-6 -6 18],[1 0 0], 'FaceAlpha', 0.5);
% Dieser Befehl funktioniert unter Octave-3.0.1 mit Jhandle nicht korrekt.
% Statt dessen sollte dort der Befehl
% patch([6 -2 -2],[-3 9 -3],[-6 -6 18], 'cdata', reshape([1 0 0],1,1,3),
% 'FaceColor', 'flat', 'FaceAlpha', 0.5);
% verwendet werden.
% Achsen beschriften
xlabel('x')
ylabel('y')
zlabel('z')
% Zeichne Punkte A, B, C ein
plot3(A(1),A(2),A(3),'Marker','.','MarkerSize',20,'Color','blue')
plot3(B(1),B(2),B(3),'Marker','.','MarkerSize',20,'Color','blue')
plot3(C(1),C(2),C(3),'Marker','.','MarkerSize',20,'Color','blue')
% Stelle das Dreieck durch Zeichnen der Verbindungsstrecken dar
p=A; q=B;
plot3([p(1),q(1)], [p(2),q(2)], [p(3),q(3)], 'LineWidth',2,'Color','blue')
p=A; q=C;
plot3([p(1),q(1)], [p(2),q(2)], [p(3),q(3)], 'LineWidth',2,'Color','blue')
plot3([p(1),q(1)], [p(2),q(2)], [p(3),q(3)], 'LineWidth',2,'Color','blue')
```

```
% b) -----
% Projiziere AC in die Ebene (verwende Formel aus der Vorlesung)
Proj AC = 1/\text{norm}(n)^2 \text{cross}(n, \text{cross}(C-A, n))
Proj AC =
    0
% Zeichne Projektion in die Ebene ein
p=A; q=A+Proj AC;
plot3([p(1),q(1)], [p(2),q(2)], [p(3),q(3)], 'LineWidth',2,'Color','green')
% Projiziere BC in die Ebene (verwende Formel aus der Vorlesung)
Proj BC = 1/norm(n)^2*cross(n, cross(C-B, n))
Proj BC =
    0
    -3
% Zeichne Projektion in die Ebene ein
p=B; q=B+Proi BC;
plot3([p(1),q(1)], [p(2),q(2)], [p(3),q(3)], 'LineWidth',2,'Color','green')
% Berechne den Lotfußpunkt
PC=C+1/norm(n)^2*dot(A-C,n)*n;
% (Es gilt PC = A+Proj AC = B+Proj BC .)
% Zeichne Lotfußpunkt PC ein
plot3(PC(1), PC(2), PC(3), 'Color', 'g',
     'Marker','.','MarkerSize',20,'Color','red')
% Zeichne Verbindungsstrecke
p=C; q=PC;
plot3([p(1),q(1)], [p(2),q(2)], [p(3),q(3)], 'LineWidth',2,'Color','red')
% Berechne Abstand
norm(C-PC)
ans =
  29.9333
% ggf. von Hand in gewünschte Lage drehen,
% mit der folgenden Anweisung wird Betrachterstandpunkt vorgegeben:
view(-51.3,56)
% Titel setzen
viewparam=get(gca(),'view');
title(['Projektion des blauen auf das grüne Dreieck, Darstellung mit view(',
num2str(viewparam(1)),',',num2str(viewparam(2)),')']);
print -depsc ak5 zusatz 4.eps
% d) -----
% Berechne Flächeninhalt des projizierten Dreiecks
Flaecheninhalt=1/2*norm(cross(A-PC, B-PC))
Flaecheninhalt =
  11.2250
```

Darstellung des von den Vektoren a, b und a x b aufgespannten Paralellepipedes mit view(-50,50)



Projektion des blauen auf das grüne Dreieck, Darstellung mit view(-51.3,56)

