Aufgabe 24.4

Lösen Sie die Gleichung $x^3-3x^2+2x+3=0$, die in Aufgabe 12.67 mit dem Newtonverfahren gelöst wurde, mit der Intervallhalbierungsmethode für das Intervall [-1,1]!

Lösung:

Zunächst soll die Anzahl der Nullstellen des kubischen Polynoms $f(x) = x^3 - 3x^2 + 2x + 3$ bestimmt werden. Da $\lim_{x \to -\infty} f(x) = -\infty$ und $\lim_{x \to -\infty} f(x) = \infty$ gilt und f(x) überall stetig ist, gibt es mindestens

werden. Da
$$\lim_{x \to -\infty} f(x) = -\infty$$
 und $\lim_{x \to \infty} f(x) = \infty$ gilt und $f(x)$ uberall stetig ist, gibt es mindestens eine Nullstelle. Lokale Extrema können nur für $f'(x) = 3x^2 - 6x + 2 = 2 = 0$, also für $x = 1 \pm \sqrt{\frac{1}{3}}$ vorliegen. Wegen $f''(x) = 6x - 6$

$$\begin{cases} <0, & x = 1 - \sqrt{\frac{1}{3}} \\ >0, & x = 1 + \sqrt{\frac{1}{3}} \end{cases}$$
 liegt an der Stelle $1 - \sqrt{\frac{1}{3}}$ ein lokales

Maximum und bei $1+\sqrt{\frac{1}{3}}$ ein lokales Minimum vor. Der Funktionswert in diesem Minimum ist $f(1+\sqrt{\frac{1}{3}})\approx 2.615>0$, deshalb hat das kubische Polynom nur eine Nullstelle.

Intervallhalbierungsmethode (Bisektion) zur Lösung von f(x) = 0 (f(x) stetig):

Startintervall $[x_0, y_0]$ so wählen, dass $f(x_0)$ und $f(y_0)$ unterschiedliches Vorzeichen haben.

$$m = \frac{x_n + y_n}{2}$$
, falls $f(m_n) = 0$ Lösung gefunden, sonst falls x_n , m_n gleiches Vorzeichen $x_{n+1} = m_n$, $y_{n+1} = y_n$, falls m_n , y_n gleiches Vorzeichen $x_{n+1} = x_n$, $y_{n+1} = m_n$,

usw., Lösung wird immer weiter eingeschlossen. Verfahren konvergiert immer, aber langsam.

$$f(-1) = -3$$
, $f(1) = 3$, also $[-1,1]$ als Startintervall geeignet.

n	x_n	y_n	m_n	$f(m_n)$
0	-1	1	0	3
1	-1	0	-0.5	1.125
2	-1	-0.5	-0.75	-0.609375
3	-0.75	-0.5	-0.625	0.3339844
4	-0.75	-0.625	-0.6875	-0.1179199
5	-0.6875	-0.625	-0.65625	0.1128845
6	-0.6875	-0.65625	-0.671875	-0.0012932
7	-0.671875	-0.65625	-0.6640625	0.0561004

Die Lösung liegt zwischen -0.671875 und -0.6640625. Das Intervallhalbierungsverfahren konvergiert langsam gegen die in Aufgabe 12.67 mit dem Newtonverfahren ermittelte Lösung $x^* \approx$ -0.67169988.