Aufgabe 24.3

Die Gleichung $e^x = 3x$ soll numerisch gelöst werden.

- a) Zeigen Sie, dass die Funktion $F(x) = \frac{e^x}{3}$ über dem Intervall [0.5, 0.7] eine Selbstabbildung ist, die der Kontraktionsbedingung genügt!
- b) Ermitteln Sie durch Picarditeration mit F(x) ausgehend vom Startwert $x_0 = 0.6$ die Lösung auf 4 Stellen nach dem Komma genau! Welcher Aufwand ist erforderlich?
- c) Geben Sie ein schnelleres Iterationsverfahren an! Wie viele Iterationsschritte sind bei diesem beim Startwert $x_0 = 0.6$ für eine Genauigkeit von 4 Stellen nach dem Komma erforderlich?
- d) Warum funktioniert eine Picarditeration mit $F(x) = \ln 3x$ nicht?

Lösung:

a)
$$F(0.5) = \frac{e^{0.5}}{3} \approx 0.54957$$
, $F(0.7) = \frac{e^{0.7}}{3} \approx 0.67125$, $F(x)$ monoton wachsend $\implies \text{für } x \in [0.5, 0.7] \text{ gilt } F(x) \in \left[\frac{e^{0.5}}{3}, \frac{e^{0.7}}{3}\right] \subset [0.5, 0.7]$, also ist $F(x)$ Selbstabbildung.

Nach dem Mittelwertsatz der Differenzialrechnung gibt es für $x,y \in [0.5,0.7]$ mit x < y ein ξ mit $x < \xi < y$ (also auch $\xi \in (0.5,0.7)$), für das $\left| \frac{F(x) - F(y)}{x - y} \right| = |F'(\xi)| = \frac{\mathrm{e}^{\xi}}{3} \le \frac{\mathrm{e}^{0.7}}{3} \approx 0.67125 < 1$ gilt. Damit gilt $|F(x) - F(y)| \le \frac{\mathrm{e}^{0.7}}{3} |x - y|$, also Kontraktivität.

b)
$$x_{n+1} = F(x_n) = \frac{e^{x_n}}{3}$$

n	x_n	gerundet	n	x_n	gerundet	n	x_n	gerundet
0	.6	.6000	12	.61900237	.6190	24	.61906110	.6191
1	.60737293	.6074	13	.61902482	.6190	25	.61906117	.6191
2	.61186760	.6119	14	.61903871	.6190	26	.61906122	.6191
3	.61462394	.6146	15	.61904731	.6190	27	.61906124	.6191
4	.61632038	.6163	16	.61905263	.6191	28	.61906126	.6191
5	.61736682	.6174	17	.61905593	.6191	29	.61906127	.6191
6	.61801320	.6180	18	.61905797	.6191	30	.61906128	.6191
7	.61841279	.6184	19	.61905923	.6191	31	.61906128	.6191
8	.61865996	.6187	20	.61906002	.6191	32	.61906128	.6191
9	.61881289	.6188	21	.61906050	.6191	33	.61906128	.6191
10	.61890753	.6189	22	.61906080	.6191	34	.61906129	.6191
11	.61896611	.6190	23	.61906099	.6191	35	.61906129	.6191

Der Wert $\underline{0.6191}$ wird nach 16 Iterationsschritten erreicht. Um sicher zu sein, muss man allerdings mehr Iterationsschritte ausführen oder z.B. F(0.61905) und F(0.61915) gegenüber stellen:

Es gilt F(0.61905) = 0.61905430 > 0.61905 und F(0.61915) = 0.61911621 < 0.61915. x und F(x) schneiden sich also zwischen 0.61905 und 0.61915, also in dem Bereich, der auf 0.6191 gerundet wird.

Aufgabe 24.3

c) Newtonverfahren für
$$f(x) = x - \frac{e^x}{3} = 0$$
: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n - \frac{e^{x_n}}{3}}{1 - \frac{e^{x_n}}{3}}$

n	x_n	gerundet	
0	.6	.6000	
1	.61877846	.6188	
2	.61906122	.6191	
3	.61906129	.6191	
4	.61906129	.6191	Hier besteht schon nach 3

d) Für $F(x) = \ln 3x$ gilt $F'(\xi) = \frac{3}{3\xi} = \frac{1}{\xi}$. Da für die Lösung x = 0.61906129 $F'(x) \approx 1.62 > 1$ gilt, ist Kontraktivität nicht zu erreichen. Tatsächlich passiert Folgendes:

n	x_n
0	.6
1	.58778666
2	.56722108
3	.53160614
4	.46675989
5	.33667199
6	.00996614
7	-3.50994948
8	nicht definiert