Rolf Haftmann: Aufgabensammlung zur Höheren Mathematik mit ausführlichen Lösungen (Hinweise zu den Quellen für die Aufgaben)

Aufgabe 21.47

Lösen Sie die inhomogenen linearen Differenzialgleichungen 1. Ordnung mit konstanten Koeffizienten a) y' = -2y + 3, b) $y' = -2y + 3\cos 4x$!

Verwenden Sie dabei zur Bestimmung einer speziellen Lösung der inhomogenen Differenzialgleichung den Lösungsansatz in Form der rechten Seite ("Störgliedansatz")!

Lösung:

homogen:
$$y' = -2y$$
, Ansatz: $y = Ce^{\lambda x}$, $\lambda e^{\lambda x} = -2e^{\lambda x}$, $-2 - \lambda = 0$, $\lambda = -2$, allgemeine Lösung der homogenen Dgl.: $y = Ce^{-2x}$

inhomogen:

a) Inhomogenität: "rechte Seite": c(x) = 3

Ansatz:
$$y(x) = A, y'(x) = 0$$

Einsetzen in inhomogene Dgl.: 0 = -2A + 3, $A = \frac{3}{2}$

spezielle Lösung der inhomogenen Dgl.:
$$y = \frac{3}{2}$$

allgemeine Lösung der inhomogenen Dgl.: $y = Ce^{-2x} + \frac{3}{2}$

b) Inhomogenität: "rechte Seite": $c(x) = 3\cos 4x \ (+0\sin 4x)$

Ansatz:
$$y(x) = A\cos 4x + B\sin 4x, \ y'(x) = -4A\sin 4x + 4B\cos 4x$$

Einsetzen in inhomogene Dgl.:

$$-4A\sin 4x + 4B\cos 4x = -2A\cos 4x - 2B\sin 4x + 3\cos 4x = (-2A+3)\cos 4x - 2B\sin 4x$$

Koeffizientenvergleich:
$$\sin 4x$$
: $-4A = -2B$ $B = 2A$ $8A = -2A + 3$, $A = \frac{3}{10}$, $B = \frac{6}{10}$

spezielle Lösung der inhomogenen Dgl.:
$$y = \frac{3}{10}\cos 4x + \frac{6}{10}\sin 4x$$

allgemeine Lösung der inhomogenen Dgl.: $y = Ce^{-2x} + \frac{3}{10}\cos 4x + \frac{6}{10}\sin 4x$