Aufgabe 20.1

Sei
$$B = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2, 0 \le y \le 2\}$$
. Berechnen Sie $\iint_B (x + y^3) db$!

Lösung:

Bereichsintegrale: Verallgemeinerung des bestimmten Integrals auf ebene bzw. räumliche Integrationsbereiche (Flächen bzw. Körper)

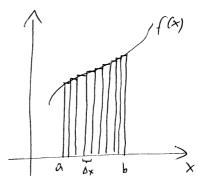
Bestimmtes Integral:

Summe kleiner Rechteckflächen:

Kleine Intervalllänge mal Funktionswert,

Grenzwert ist Flächeninhalt,

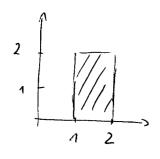
∫ ist stilisiertes S für Summe



	'	
1D: Integral über Intervall	2D: Ebenes Bereichsintegral	3D: Räumliches Bereichsint.
f(x)	y Ab	
$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum f(x) \Delta x$	$\iint_{B} f(x,y) \mathrm{d}b = \lim_{\Delta b \to 0} \sum_{A} f \Delta b$	$\iiint_K f(x, y, z) \mathrm{d}k = \lim_{\Delta k \to 0} \sum_{k \to 0} f \Delta k$
Σ Fkt.wert \times kleine Strecke	\sum Fkt.wert \times kleine Fläche	\sum Fkt.wert \times kleines Vol.
Flächeninhalt unter $f(x)$:	Volumen unter $f(x,y)$:	
$A = \int_{a}^{b} f(x) \mathrm{d}x$	$V = \iint\limits_B f(x, y) \mathrm{d}b$	
Länge des Intervalls $[a,b]$:	Flächeninhalt von <i>B</i> :	Volumen von <i>K</i> :
$l = \int_{a}^{b} dx = \lim \sum \Delta x = b - a$	$A = \lim \sum \Delta b = \iint_B \mathrm{d}b$	$V = \lim \sum \Delta k = \iiint_K \mathrm{d}k$
Masse des Intervalls:	Masse des Fläche:	Masse des Körpers:
$m = \int_{a}^{b} \rho(x) \mathrm{d}x$	$m = \iint_B \rho(x, y) \mathrm{d}b$	$m = \iiint\limits_K \rho(x, y, z) \mathrm{d}k$

Merkstoff zu Bereichsintegralen

Aufgabe 20.1 2



 $\mathrm{d}b = \mathrm{d}x\,\mathrm{d}y,$

Darstellung als iteriertes Integral,
Integrationsreihenfolge beliebig, da feste Grenzen
$$\int_{0}^{2} \int_{1}^{2} (x+y^3) dx dy = \int_{0}^{2} \left(\int_{1}^{2} (x+y^3) dx \right) dy = \int_{0}^{2} \left[\frac{x^2}{2} + y^3 x \right]_{1}^{2} dy$$

$$= \int_{0}^{2} \left[2 + 2y^3 - \frac{1}{2} - y^3 \right] dy = \int_{0}^{2} \left(y^3 + \frac{3}{2} \right) dy = \frac{y^4}{4} + \frac{3}{2} y \Big|_{0}^{2} = 4 + 3 = \frac{7}{2}$$

oder:
$$\int_{1}^{2} \int_{0}^{2} (x+y^{3}) \, dy \, dx = \int_{1}^{2} \left(\int_{0}^{2} (x+y^{3}) \, dy \right) dx = \int_{1}^{2} \left[xy + \frac{y^{4}}{4} \right]_{0}^{2} dx$$
$$= \int_{1}^{2} (2x+4) \, dx = \frac{x^{2}}{4} + 4x \Big|_{1}^{2} = 4 + 8 - 1 - 4 = \frac{7}{4}$$