Aufgabe 15.3

Betrachtet werden die Kurven
$$\vec{x}_1(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix} = \begin{pmatrix} \cosh t \\ \sinh t \end{pmatrix}, \quad \vec{x}_2(t) = \begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$
 und $\vec{x}_3(t) = \begin{pmatrix} x_3(t) \\ y_3(t) \end{pmatrix} = \begin{pmatrix} -\cosh t \\ \sinh t \end{pmatrix}$ jeweils für $t \in \mathbb{R}$.

- a) Zeigen Sie, dass $\cosh^2 t \sinh^2 t = 1$ gilt! Welches Analogon hat diese Beziehung für Winkelfunktionen?
- b) Berechnen Sie die Tangentenvektoren für die drei Kurven!
- c) Geben Sie mithilfe der Beziehungen aus a) parameterfreie Gleichungen der drei Kurven an!
- d) Stellen Sie die drei Kurven grafisch dar! Wie oft werden die Kurven für $-\infty < t < \infty$ durch-laufen?
- e) Beschreiben Sie die in der oberen Halbebene (einschließlich x-Achse) gelegenen Teile der drei Kurven als Funktionen $y = f_i(x)$, i = 1, 2, 3!
- f) Berechnen Sie für die drei Funktionen die Ableitung $\frac{dy}{dx}$ zum einen mithilfe der Formel $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)}$ aus $\vec{x}'(t)$, zum anderen als f'(x)!
- g) Die Funktionen $f_1(x)$, $f_2(x)$ und $f_3(x)$ sollen zu einer einheitlichen über der gesamten x-Achse definierten Funktion zusammengefasst werden. Beschreiben Sie diese Funktion durch einen einheitlichen Ausdruck!
- h) Berechnen Sie die Gleichungen der Tangenten an die gegebenen Kurven in den Punkten $(1/2, \sqrt{3}/2), (1,0)$ und $(2, \sqrt{3})$ und zeichnen Sie die Tangenten in das Bild aus d) ein!

Lösung:

a)
$$\cosh^2 t - \sinh^2 t = \left(\frac{e^t + e^{-t}}{2}\right)^2 + \left(\frac{e^t - e^{-t}}{2}\right)^2 = \frac{\left(e^{2t} + 2 + e^{-2t}\right) - \left(e^{2t} - 2 + e^{-2t}\right)}{4} = \frac{4}{4} = 1$$

Dies entspricht für Winkelfunktionen dem Satz des Pythagoras $\cos^2 t + \sin^2 t = 1$.

b)
$$\vec{x}_1'(t) = \begin{pmatrix} \sinh t \\ \cosh t \end{pmatrix}$$
, $\vec{x}_2'(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}$, $\vec{x}_3'(t) = \begin{pmatrix} -\sinh t \\ \cosh t \end{pmatrix}$

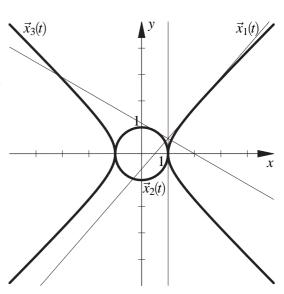
c)
$$\vec{x}_1(t)$$
 und $\vec{x}_3(t)$: $x^2 - y^2 = 1$ (Hyperbel)
 $\vec{x}_2(t)$: $x^2 + y^2 = 1$ (Kreis)

 $\vec{x}_1(t)$ und $\vec{x}_3(t)$ werden einmal durchlaufen, da der Sinus Hyperbolicus monoton von $-\infty$ nach ∞ wächst.

 $\vec{x}_2(t)$ wird unendlich oft durchlaufen, da Sinus und Kosinus periodisch mit gleicher Periodenlänge sind.

Bei h) berechnete Tangenten:

$$x+\sqrt{3}y=2$$
 für den Punkt $(1/2, \sqrt{3}/2)$,
 $x=1$ für den Punkt $(1,0)$,
 $2x-\sqrt{3}y=1$ für den Punkt $(2, \sqrt{3})$.



Aufgabe 15.3 2

e)
$$\vec{x}_1(t)$$
 und $\vec{x}_3(t)$: $y^2 = x^2 - 1$, $y = \sqrt{x^2 - 1}$ $\vec{x}_2(t)$: $y^2 = 1 - x^2$, $y = \sqrt{1 - x^2}$ (da jeweils obere Halbebene)

$$f_1(x) = \sqrt{x^2 - 1}, \quad 1 \le x,$$

 $f_2(x) = \sqrt{1 - x^2}, \quad -1 \le x \le 1,$
 $f_3(x) = \sqrt{x^2 - 1}, \quad x \le -1$

f)
$$\vec{x}_1(t)$$
: $\frac{\mathrm{d}y_1}{\mathrm{d}x_1} = \frac{y_1'(t)}{x_1'(t)} = \frac{\cosh t}{\sinh t} = \coth t$, $f_1'(x) = \frac{2x}{2\sqrt{x^2 - 1}} = \frac{x}{\sqrt{x^2 - 1}}$
(Wg. $y \ge 0$ (obere HE) ist $y = \sqrt{x^2 - 1}$, so dass sich in beiden Fällen $\frac{x}{y} = \frac{\cosh t}{\sinh t}$ ergibt.)

$$\vec{x}_2(t)$$
: $\frac{dy_2}{dx_2} = \frac{y_2'(t)}{x_2'(t)} = \frac{\cos t}{-\sin t} = -\cot t$, $f_2'(x) = \frac{-2x}{2\sqrt{1-x^2}} = -\frac{x}{\sqrt{1-x^2}}$
(Wg. $y \ge 0$ (obere HE) ist $y = \sqrt{1-x^2}$, so dass sich in beiden Fällen $-\frac{x}{y} = -\frac{\cos t}{\sin t}$ ergibt.)

$$\vec{x}_3(t) : \frac{dy_3}{dx_3} = \frac{y_3'(t)}{x_3'(t)} = \frac{\cosh t}{-\sinh t} = -\coth t, \quad f_3'(x) = \frac{2x}{2\sqrt{x^2 - 1}} = \frac{x}{\sqrt{x^2 - 1}}$$

$$(\text{Wg. } y \ge 0 \text{ (obere HE) ist } y = \sqrt{x^2 - 1}, \text{ so dass sich in beiden Fällen } \frac{x}{y} = \frac{-\cosh t}{\sinh t} \text{ ergibt.)}$$

g)
$$f(x) = \sqrt{|x^2 - 1|}, x \in \mathbb{R}$$

h) $(1/2, \sqrt{3}/2)$ liegt wegen $x^2 + y^2 = 1$ auf dem Kreis $\vec{x}_2(t)$, dabei ist

$$\vec{x}_2\left(\frac{\pi}{3}\right) = \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}, \ \vec{x}_2'\left(\frac{\pi}{3}\right) = \frac{1}{2} \begin{pmatrix} -\sqrt{3} \\ 1 \end{pmatrix}, \ \text{die Tangente also} \ \vec{x}_{\text{Tangente}} = \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} + u \begin{pmatrix} -\sqrt{3} \\ 1 \end{pmatrix}.$$

Man kann auch mit mit der Darstellung $f_2(x)$ argumentieren, die Tangentengleichung ergibt sich da zu $T_1(x) = f_2\left(\frac{1}{2}\right) + f_2'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) = \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{3}}\left(x - \frac{1}{2}\right) = \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}}x$, d.h. $x + \sqrt{3}y = 2$, das ist die parameterfreie Darstellung der oben mit dem Parameter u beschriebenen Gerade.

(1,0) liegt wegen $x^2 \pm y^2 = 1$ auf dem Kreis $\vec{x}_2(t)$ und auf dem rechten Hyperbelzweig $\vec{x}_1(t)$, dabei ist

$$\vec{x}_2(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \vec{x}_2'(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \text{die Tangente an den Kreis also} \ \vec{x}_{\text{Tangente}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$\vec{x}_1(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{x}_1'(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ die Tangente an die Hyperbel also auch } \vec{x}_{\text{Tangente}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Für die Darstellungen $f_2(x)$ und $f_1(x)$ streben die Ableitungen für $x \to 1$ gegen $-\infty$ bzw. ∞ , so dass sich die senkrechte Gerade x = 1 ergibt, das ist die parameterfreie Darstellung der angegebenen Gerade.

 $(2,\sqrt{3})$ liegt wegen $x^2-y^2=1,\ x\geq 1$ auf dem rechten Hyperbelzweig $\vec{x}_1(t)$. Da sich der Tangentenvektor einfach durch Vertauschen der Komponenten des Ortsvektors ergibt, muss man den Parameter \bar{t} nicht explizit berechnen. Es gilt

$$\vec{x}_1(\vec{t}) = \begin{pmatrix} 2 \\ \sqrt{3} \end{pmatrix}, \ \vec{x}_1'(\vec{t}) = \begin{pmatrix} \sqrt{3} \\ 2 \end{pmatrix}, \ \text{die Tangente also} \ \vec{x}_{\text{Tangente}} = \begin{pmatrix} 2 \\ \sqrt{3} \end{pmatrix} + u \begin{pmatrix} \sqrt{3} \\ 2 \end{pmatrix}.$$

Man kann auch mit der Darstellung $f_1(x)$ argumentieren, die Tangentengleichung ergibt

Aufgabe 15.3 3

sich da zu $T_1(x) = f_1(2) + f_2'(2)(x-2) = \sqrt{3} + \frac{2}{\sqrt{3}}(x-2) = -\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}x$, d.h. $2x - \sqrt{3}y = 1$, das ist die parameterfreie Darstellung der angegebenen Gerade.