Aufgabe 14.8

Entwickeln Sie die Funktion f(x) = x, $0 \le x \le \pi$

- a) in eine reine Kosinusreihe,
- b) in eine reine Sinusreihe!
- c) Bestimmen Sie $\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$!

Lösung:

Fourierreihen (für periodische Funktionen)

Periodenlänge 2π $f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$ $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$ $b_k = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin kx \, dx$

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos k \frac{2\pi}{T} x + b_k \sin k \frac{2\pi}{T} x \right)$$
$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos k \frac{2\pi}{T} x dx$$

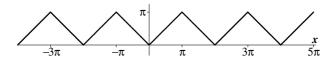
$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin k \frac{2\pi}{T} x dx$$

Periodenlänge T

Eine **reine Kosinusreihe** ergibt sich für **gerade Funktionen**, eine **reine Sinusreihe** ergibt sich für **ungerade Funktionen**.

Für die gestellte Aufgabe muss also die über $[0,\pi]$ definierte Funktion zunächst gerade bzw. ungerade auf $(-\pi,0)$ fortgesetzt werden. Anschließend ist die nun über $(-\pi,\pi]$ definierte Funktion periodisch fortzusetzen, so dass sich die Periodenlänge 2π ergibt.

a) f(x) = x, $0 \le x \le \pi$ muss gerade auf $[-\pi, \pi]$ fortgesetzt werden: $f(x) = |x|, -\pi \le x \le \pi$. Diese Funktion ist dann periodisch fortzusetzen, Periodenlänge 2π .



$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos kx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos kx \, dx$$
, da Integrand gerade

 $b_k = 0$, da gerade (Bei Berechnung wäre Integrand $|x| \sin kx$ ungerade \Longrightarrow Integral 0.)

$$\int x \cos kx \, dx = x \frac{\sin kx}{k} - \int \frac{\sin kx}{k} \, dx = \frac{x \sin kx}{k} + \frac{\cos kx}{k^2} \quad \text{für } k \neq 0$$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x \, dx = \frac{2}{\pi} \frac{x^2}{2} \Big|_0^{\pi} = \frac{2}{\pi} \frac{\pi^2}{2} = \pi$$

Aufgabe 14.8

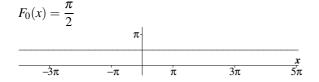
$$a_{k} = \frac{2}{\pi} \int_{0}^{\pi} x \cos kx \, dx = \frac{2}{\pi} \left(\frac{x \sin kx}{k} + \frac{\cos kx}{k^{2}} \right) \Big|_{0}^{\pi} = \frac{2}{\pi k^{2}} (\cos k\pi - 1) = \frac{2}{\pi k^{2}} ((-1)^{k} - 1)$$

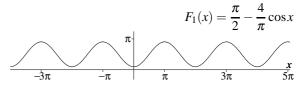
$$= \begin{cases} -\frac{4}{\pi k^{2}}, & k \text{ ungerade} \\ 0, & k \text{ gerade}, \neq 0 \end{cases}$$

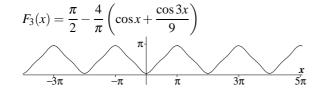
Da f(x) überall stetig ist, konvergiert die Fourierreihe überall, so dass

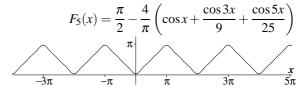
$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos(2k+1)x}{(2k+1)^2} \quad \text{gilt.}$$

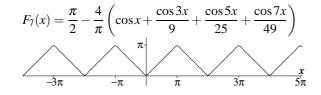
$$F_{2n+1}(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{n} \frac{\cos(2k+1)x}{(2k+1)^2}$$

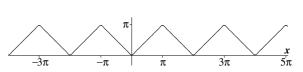






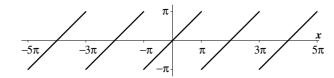






 $F_9(x)$

b) f(x) = x, $0 \le x \le \pi$ muss ungerade auf $(-\pi, \pi]$ fortgesetzt werden: f(x) = x, $-\pi < x \le \pi$. Diese Funktion ist dann periodisch fortzusetzen, Periodenlänge 2π .



$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin kx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin kx \, dx$$
, da Integrand gerade

 $a_k = 0$, da ungerade (Bei Berechnung wäre Integrand $x \cos kx$ ungerade \Longrightarrow Integral 0.)

$$\int x \sin kx \, dx = x \left(-\frac{\cos kx}{k} \right) + \int \frac{\cos kx}{k} \, dx = -\frac{x \cos kx}{k} + \frac{\sin kx}{k^2}$$

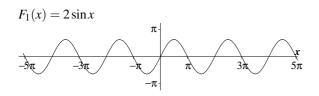
(k=0 kommt nicht vor, da Sinuskoeffizient.)

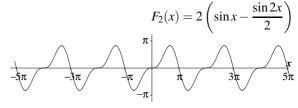
Aufgabe 14.8

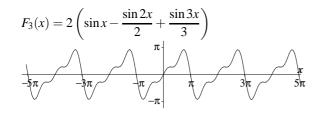
$$b_k = \frac{2}{\pi} \int_0^{\pi} x \sin kx \, dx = -\frac{2}{\pi} \left(\frac{x \cos kx}{k} + \frac{\sin kx}{k^2} \right) \Big|_0^{\pi} = -\frac{2 \cos k\pi}{k} = \frac{2(-1)^{k+1}}{k}$$

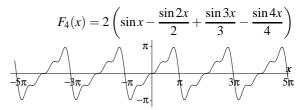
$$f(x) \sim 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} \pm \dots\right) = 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}\sin kx}{k}$$

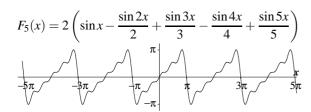
$$F_n(x) = 2\sum_{k=1}^n \frac{(-1)^{k+1} \sin kx}{k}$$



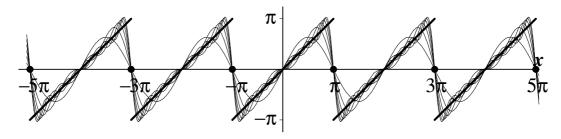








Nach dem Satz von Dirichlet konvergiert die Fourierreihe gegen f(x) für $x \neq (2m+1)\pi$ und gegen $\frac{\pi + (-\pi)}{2} = 0$ für $x = (2m+1)\pi$.



c) Da die Fourierreihe aus a) überall konvergiert, konvergiert sie auch für x=0, also gilt

$$0 = f(0) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \text{ und damit } \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8},$$

$$1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \frac{1}{81} + \dots = \frac{\pi^2}{8} \approx 1.2337.$$