
Aufgabe 12.47

Ermitteln Sie die Gleichungen der Tangenten an die Funktion $y = x^3 + x^2 - x + 1$ in den Punkten $x_0 = -1$, $x_0 = 0$ und $x_0 = 1$!

Lösung:

$$y'(x) = 3x^2 + 2x - 1$$

- a) $x_0 = -1$: Anstieg der Tangente y'(-1) = 0, Tangente T(x) = mx + n = n, Berührungspunkt: T(-1) = y(-1) = 2 = n, also Tangente T(x) = 2
- b) $x_0 = 0$: Anstieg der Tangente y'(0) = -1, Tangente T(x) = mx + n = -x + n, Berührungspunkt: T(0) = y(0) = 1 = -0 + n = n, also Tangente $\underline{T(x)} = -x + 1$
- c) $x_0 = 1$: Anstieg der Tangente y'(1) = 4, Tangente T(x) = mx + n = 4x + n, Berührungspunkt: $T(1) = y(1) = 2 = 4 \cdot 1 + n \Rightarrow n = -2$, also Tangente $\underline{T(x) = 4x 2}$

