(Hinweise zu den Quellen für die Aufgaben)

Aufgabe 9.44

Welche der folgenden Reihen sind konvergent:

a)
$$\sum_{n=1}^{\infty} \frac{9^n}{10^n}$$
, b) $\sum_{n=1}^{\infty} 2^n$, c) $\sum_{n=1}^{\infty} 1 - \frac{1}{n}$, d) $\sum_{n=1}^{\infty} \frac{1}{2} \sin^2 n$, e) $\sum_{n=1}^{\infty} \frac{1}{2n-1}$,

f)
$$\sum_{n=1}^{\infty} (\ln(n+1) - \ln n)$$
, g) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, h) $\sum_{n=0}^{\infty} (2^{-n} + 3^{-2n})$, i) $\sum_{n=0}^{\infty} 2^{-n} 3^{-2n}$?

Bestimmen Sie im Konvergenzfall die Summen!

Lösung:

- a) geometrische Reihe mit $|q| = \frac{9}{10} < 1 \implies$ konvergent $\sum_{n=1}^{\infty} \frac{9^n}{10^n} = \frac{9}{10} \sum_{n=0}^{\infty} \frac{9^n}{10^n} = \frac{9}{10} \frac{1}{1 \frac{9}{10}} = 9.$
- b) geometrische Reihe mit $|q| = 2 > 1 \implies$ divergent
- c) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} 1 \frac{1}{n} = 1 \neq 0 \implies$ Reihe divergent
- d) $a_n = \frac{1}{2} \sin^2 n$ divergiert unbestimmt \implies Reihe divergent
- e) $\frac{1}{2n-1} > \frac{1}{2n} > 0$, $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ divergiert (harmonische Reihe). Nach dem Majoranten-kriterium divergiert auch die gegebene Reihe.
- f) $S_N = \sum_{n=1}^N (\ln(n+1) \ln n) = \ln(N+1) \ln 1 = \ln(N+1) \longrightarrow \infty$ für $N \to \infty$. Reihe divergent
- g) $S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \left(\frac{1}{n} \frac{1}{n+1}\right) = 1 \frac{1}{N+1} \longrightarrow 1$ für $N \to \infty$. Reihe konvergiert gegen 1.
- h) $S = \sum_{n=0}^{\infty} (2^{-n} + 3^{-2n}) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n + \sum_{n=0}^{\infty} \left(\frac{1}{9}\right)^n$. Die beiden geometrischen Reihen konvergieren wegen $|\frac{1}{2}| < 1$ und $|\frac{1}{9}| < 1$. $S = \frac{1}{1 \frac{1}{2}} + \frac{1}{1 \frac{1}{9}} = \frac{25}{8}$
- i) geometrische Reihe mit $|q| = \frac{1}{18} < 1 \implies \text{konvergent.}$ $\sum_{n=0}^{\infty} \left(\frac{1}{18}\right)^n = \frac{1}{1 \frac{1}{18}} = \frac{18}{17}$