Aufgabe 9.5

Die Folge $a_k = \frac{1}{2^k}$, $k \in \mathbb{N}$ konvergiert für $k \to \infty$ gegen 0, weil für alle $\varepsilon > 0$ ein $N_0(\varepsilon) \in \mathbb{N}$ existiert, so dass $|a_k| < \varepsilon$ für alle $k \ge N_0(\varepsilon)$ gilt. Bestimmen Sie ein solches $N_0(\varepsilon)$ für $\varepsilon = 0,1$, $\varepsilon = 0,01$, $\varepsilon = 0,001$ und allgemein für beliebiges $\varepsilon > 0$!

Lösung:

$$|a_k| < \varepsilon \ \text{bedeutet} \ \frac{1}{2^k} < \varepsilon \iff \frac{1}{\varepsilon} < 2^k \iff \ln \frac{1}{\varepsilon} < k \ln 2 \iff k > -\frac{\ln \varepsilon}{\ln 2}.$$

Wählt man als $N_0(\varepsilon)$ die zu $-\frac{\ln \varepsilon}{\ln 2}$ nächstgrößere ganze Zahl, so ergibt sich

$$N_0(0,1) = 4$$
, $N_0(0,01) = 7$ und $N_0(0,001) = 10$.