(Hinweise zu den Quellen für die Aufgaben)

Aufgabe 8.59

Überprüfen Sie mit dem Simplexalgorithmus, ob das Ungleichungssystem

$$x_1 + 2x_2 + x_3 \le 4$$

$$2x_1 + 3x_2 + x_3 \ge 9$$

$$x_1, x_2, x_3 \ge 0$$

lösbar ist!

Hinweis: Versuchen Sie, mit der Hilfsaufgabe zum Simplexalgorithmus eine zulässige Basisdarstellung zu finden!

Lösung:

Version Gaußalgorithmus

(Literatur: Luderer, B. und Würker, U.: Einstieg in die Wirtschaftsmathematik. Vieweg+Teubner)

Normalform des Ungleichungssystems:

$$x_1 + 2x_2 + x_3 + u_1 = 4$$

$$2x_1 + 3x_2 + x_3 - u_2 = 9$$

$$x_1, x_2, x_3, u_1, u_2 \ge 0$$

$$h = -v_2 \longrightarrow \max$$

$$x_1 + 2x_2 + x_3 + u_1 = 4$$

$$2x_1 + 3x_2 + x_3 - u_2 + v_2 = 9$$

$$x_1, x_2, x_3, u_1, u_2, v_2 \ge 0$$

BV		x_1	x_2	x_3	u_1	u_2	<i>v</i> ₂		0
DV	c_{B}	U	0	0	0	0	-1	x_{B}	θ
u_1	0	1	2	1	1	0	0	4	2
v_2	-1	2	3	1	0	-1	1	9	3
		2	-3	-1	0	1	0	-9	
x_2	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0	2	4
v_2	-1	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{3}{2}$	-1	1	3	6
		$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{3}{2}$	1	0	-3	
x_1	0	1	2	1	1	0	0	4	
v_2	-1	0	-1	-1	-2	-1	1	1	
		0	1	1	2	1	0	-1	

Da alle Optimalitätsindikatoren nichtnegativ sind, ist damit das Maximimum der Hilfsaufgabe erericht, es liegt bei $-v_2 = -1$. v_2 kann also nicht kleiner als 1 und damit nicht gleich 0 werden, so dass das Ausgangs-Ungleichungssystem unlösbar ist.