(Hinweise zu den Quellen für die Aufgaben)

Aufgabe 8.35

Bestimmen Sie mit der Simplexmethode die optimale Lösung und den optimalen Zielfunktionswert der Optimierungsaufgabe $-x_1-2x_2+2x_3+x_4 \longrightarrow \max$

Lösung:

I. Version Gaußalgorithmus

(Literatur: Luderer, B. und Würker, U.: Einstieg in die Wirtschaftsmathematik. Vieweg+Teubner)

Substitution:
$$x'_1 = x_1 - 1$$
, $x_1 = x'_1 + 1$

$$z = - (x'_1+1) - 2x_2 + 2x_3 + x_4 \longrightarrow \max$$

$$-3(x'_1+1) + 3x_2 - x_3 - 3x_4 - u_1 = -7$$

$$(x'_1+1) + x_2 + x_3 + x_4 + u_2 = 3$$

$$-(x'_1+1) + x_2 - x_3 + x_4 + u_3 = 4$$

$$x'_1, x_2, x_3, x_4, u_1, u_2, u_3 \ge 0$$

Normalform:
$$z' = z + 1 = - x_1' - 2x_2 + 2x_3 + x_4 \longrightarrow \max 3x_1' - 3x_2 + x_3 + 3x_4 + u_1 = 4 x_1' + x_2 + x_3 + x_4 + u_2 = 2 -x_1' + x_2 - x_3 + x_4 + u_3 = 5 x_1', x_2, x_3, x_4, u_1, u_2, u_3 \ge 0$$

		x_1'	x_2	x_3	x_4	u_1	u_2	u_3		
BV	c_{B}	$-\dot{1}$	-2	2	1	0	0	0	$x_{\rm B}$	θ
$\overline{u_1}$	0	3	-3	1	3	1	0	0	4	4
u_2	0	1	1	1	1	0	1	0	2	2
и3	0	-1	1	-1	1	0	0	1	5	
		1	2	-2	-1	0	0	0	0	
$\overline{u_1}$	0	2	-4	0	2	1	-1	0	2	
x_3	2	1	1	1	1	0	1	0	2	
и3	0	0	2	0	2	0	1	1	7	
		3	4	0	1	0	2	0	4	

Da die Optimalitätsindikatoren für alle Nichtbasisvariablen > 0 sind, liegt das eindeutige Optimum z'=4 bei $x'_1=0, x_2=0, x_3=2, x_4=0$ vor. Für die Ausgangsaufgabe ergibt sich damit als optimale Lösung $x_1 = 1$, $x_2 = 0$, $x_3 = 2$, $x_4 = 0$ und als maximaler Zielfunktionswert 3.

Aufgabe 8.35 2

II. Version Austauschverfahren

(Literatur: Nollau, V.: Mathematik für Wirtschaftswissenschaftler. Teubner)

Substitution:
$$x'_1 = x_1 - 1$$
, $x_1 = x'_1 + 1$

$$z' = -z = (x'_1+1) + 2x_2 - 2x_3 - x_4 \longrightarrow \min$$

$$-3(x'_1+1) + 3x_2 - x_3 - 3x_4 - u_1 = -7$$

$$(x'_1+1) + x_2 + x_3 + x_4 + u_2 = 3$$

$$-(x'_1+1) + x_2 - x_3 + x_4 + u_3 = 4$$

$$x'_1, x_2, x_3, x_4, u_1, u_2, u_3 \ge 0$$

Normalform:
$$z' = x'_1 + 2x_2 - 2x_3 - x_4 + 1 \longrightarrow \min$$
 bzw.
$$3x'_1 - 3x_2 + x_3 + 3x_4 + u_1 = 4$$

$$x'_1 + x_2 + x_3 + x_4 + u_2 = 2$$

$$-x'_1 + x_2 - x_3 + x_4 + u_3 = 5$$

$$x'_1, x_2, x_3, x_4, u_1, u_2, u_3 \ge 0$$

$$z' = x'_1 + 2x_2 - 2x_3 - x_4 + 1 \longrightarrow \min$$

$$u_1 = -3x'_1 + 3x_2 - x_3 - 3x_4 + 4$$

$$u_2 = -x'_1 - x_2 - x_3 - x_4 + 2$$

$$u_3 = x'_1 - x_2 + x_3 - x_4 + 5$$

$$x'_1, x_2, x_3, x_4, u_1, u_2, u_3 \ge 0$$

S_0	NBV c	x_1'	x_2	$x_3 \\ -2$	x_4		
BV	c					1	θ
u_1	0	-3	3	-1	-3	4	4
u_2	0	-1	-1	-1 -1	-1	2	2
u_3	0	1	-1	1	-1	5	_
		1	2	-2	-1	1	

S_1	NBV	x_1'	x_2	u_2	x_4		
BV	NBV c	1	2	0	-1	1	θ
u_1	0	-2	4	1	-2	2	
x_3	-2	-1	-1	-1	-1	2	
u_3	0	$ \begin{array}{r} -2 \\ -1 \\ 0 \end{array} $	-2	-1	-2	7	
		3	4	2	1	-3	

Im Tableau S_1 sind alle Optimalitätsindikatoren > 0, also liegt das eindeutige Optimum z' = -3bei $x_1' = 0$, $x_2 = 0$, $x_3 = 2$, $x_4 = 0$ vor. Für die Ausgangsaufgabe ergibt sich damit als optimale Lösung $x_1 = 1$, $x_2 = 0$, $x_3 = 2$, $x_4 = 0$ und als maximaler Zielfunktionswert 3.