Aufgabe 7.61

Zeigen Sie mit Mitteln der Vektorrechnung, dass die Mittelpunkte der Seiten eines aus vier beliebigen Punkten des \mathbb{R}^3 gebildeten Vierecks in einer Ebene liegen und ein Parallelogramm bilden! (Zu Letzterem siehe auch Aufgabe 7.8.)

Lösung:

Seien \vec{a} , \vec{b} , \vec{c} und \vec{d} die Ortsvektoren der gegebenen Punkte des \mathbb{R}^3 . Dann haben die Seitenmittelpunkte die Ortsvektoren $\vec{r} = \frac{\vec{a} + \vec{b}}{2}$, $\vec{s} = \frac{\vec{b} + \vec{c}}{2}$, $\vec{t} = \frac{\vec{c} + \vec{d}}{2}$, $\vec{u} = \frac{\vec{d} + \vec{a}}{2}$.

Die Richtungsvektoren der Seiten des Vierecks aus den Seitenmittelpunkten sind

$$\vec{m} = \vec{s} - \vec{r} = \vec{t} - \vec{u} = \frac{\vec{c} - \vec{a}}{2} \text{ und } \vec{n} = \vec{t} - \vec{s} = \vec{u} - \vec{r} = \frac{\vec{d} - \vec{b}}{2}.$$

Gegenüberliegende Seiten sind damit parallel und gleich lang, es handelt sich um ein Parallelogramm.

Die Ortsvektoren der vier Punkte kann man auch darstellen als \vec{r} , $\vec{s} = \vec{r} + \vec{m}$, $\vec{u} = \vec{r} + \vec{n}$ und $\vec{t} = \vec{s} + \vec{n} = \vec{r} + \vec{m} + \vec{n}$. Alle vier Punkte liegen also in der Ebene $\vec{x} = \vec{r} + \lambda \vec{m} + \mu \vec{n}$.