Aufgabe 7.58

Geben Sie die Gleichung der Ebene, die den Punkt P(9,4,3) enthält und zum Vektor $\begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix}$ orthogonal ist, in parameterfreier und in Parameterform an!

Lösung:

Normalenvektor der Ebene ist
$$\begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix}$$
, die Ebenengleichung lautet somit $\begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 9 \\ 4 \\ 3 \end{pmatrix} \end{pmatrix} = 2x + 7y - 3z - 37 = 0$, d.h. $2x + 7y - 3z = 37$.

Punkte auf der Ebene sind z.B. $\begin{pmatrix} 9 \\ 4 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 15 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 20 \\ 0 \\ 1 \end{pmatrix}$, so dass man als Parameterform der

Punkte auf der Ebene sind z.B.
$$\begin{pmatrix} 9 \\ 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 15 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 20 \\ 0 \\ 1 \end{pmatrix}$$
, so dass man als Parameterform der Ebenengleichung $\vec{x} = \begin{pmatrix} 9 \\ 4 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 11 \\ -4 \\ -2 \end{pmatrix}$ erhält.