Aufgabe 6.202

Zeigen Sie, dass
$$\begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x & y \end{vmatrix} = 0$$
 die Gleichung der Gerade durch die Punkte (x_1, y_1) und (x_2, y_2) ist!

Lösung:

Nach Aufgabe 6.200 ist die Hälfte des Betrages der Determinante gleich dem Flächeninhalt des Dreiecks mit den Eckpunkten (x_1, y_1) , (x_2, y_2) und (x, y). Da drei Punkte genau dann auf einer Geraden liegen, wenn der Flächeninhalt des von ihnen gebildeten Dreiecks gleich 0 ist, liegt (x, y) auf der Geraden durch (x_1, y_1) und (x_2, y_2) .

oder

$$\begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x & y \end{vmatrix} = x_2 y + x_1 y_2 + x y_1 - x_2 y_1 - x y_2 - x_1 y = (x_2 - x_1)(y - y_1) - (x - x_1)(y_2 - y_1) = 0$$

Für $x_2 \neq x_1$, $x \neq x_1$ folgt $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$, so dass (x, y) auf der Geraden durch (x_1, y_1) und (x_2, y_2) liegt.

Für $x_2 \neq x_1$, $x = x_1$ folgt $y = y_1$, so dass (x, y) gleich (x_1, y_1) ist und auf dieser Geraden liegt.

Für $x_2 = x_1$ folgt $y_2 = y_1$, dann verschwindet die Determinante für alle Punkte (x, y), so dass durch die Gleichung keine Gerade, sondern die gesamte Ebene beschrieben wird (Punkte (x_1, y_1) und (x_2, y_2) fallen zusammen), oder $x = x_1$, dann handelt es sich um eine Parallele zur y-Achse (Gerade durch (x_1, y_1) und (x_1, y_2)).