Rolf Haftmann: Aufgabensammlung zur Höheren Mathematik mit ausführlichen Lösungen (Hinweise zu den Quellen für die Aufgaben)

Aufgabe 6.173

Die Ebenen
$$E_1$$
, E_2 und E_3 haben die Normalenvektoren $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ bzw. $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, sie schneiden die x -Achse für $x=a$, $x=b$ bzw. $x=c$. Bestimmen Sie mithilfe des Gaußschen Algorithmus die Matrix A so, dass die Koordinaten des Schnittpunkts (x,y,z) der 3 Ebenen durch $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ berechnet werden!

Lösung:

Da die Ebenen E_1 , E_2 und E_3 die Punkte (a,0,0), (b,0,0) bzw. (c,0,0) enthalten, lauten ihre Gleichungen x+3y+2z=a, x-y+2z=b bzw. x+2y-z=c. Der Schnittpunkt der 3 Ebenen wird

also durch Lösung des Gleichungssystems
$$\begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 bestimmt. Dessen

Koeffizientenmatrix muss somit invertiert werden:

Also gilt
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 mit $A = \begin{pmatrix} -\frac{1}{4} & \frac{7}{12} & \frac{2}{3} \\ \frac{1}{4} & -\frac{1}{4} & 0 \\ \frac{1}{4} & \frac{1}{12} & -\frac{1}{3} \end{pmatrix} = \frac{1}{12} \begin{pmatrix} -3 & 7 & 8 \\ 3 & -3 & 0 \\ 3 & 1 & -4 \end{pmatrix}$.