Aufgabe 6.140

Für die Auszahlung von jeweils $90 \in$ an 40 Personen stehen 30 $50 \in$ —Scheine, 70 $20 \in$ —Scheine und 70 $10 \in$ —Scheine zur Verfügung. Jede Person soll den Betrag passend erhalten, wobei niemand mehr als 5 Scheine bekommen soll. Deshalb kommen nur die Stückelungen $50+2\times20$, $50+20+2\times10$, $50+4\times10$ und $4\times20+10$ in Frage. Wie oft müssen die einzelnen Stückelungsversionen zur Anwendung kommen? Ermitteln Sie alle möglichen Lösungen! Wie viele verschiedene Lösungen gibt es?

Lösung:

Es stehen $30 \times 50 + 70 \times 20 + 70 \times 10 = 3600$ €, also genau 40×90 € zur Verfügung.

Stückelungsversion 1: $50 + 2 \times 20$,

2: $50 + 20 + 2 \times 10$,

3: $50+4\times10$,

4: $4 \times 20 + 10$

 x_i : Anzahl Stückelungsversion i,

$$50$$
 €–Scheine: $x_1 + x_2 + x_3 = 30$

20 €–Scheine:
$$2x_1 + x_2 + 4x_4 = 70$$

$$50$$
 €–Scheine: $2x_2 + 4x_3 + x_4 = 70$

1	1	1	0	30	1	1	1	0	30	1	0	-1	0	
2	1	0	4	70	0	1	2	-4	-10	0	1	2	0	1
0	2	4	1	70	0	0	0	9	90	0	0	0	1	
1	1	1	0	30	1	1	1	0	30			c ·	1 1	
0	-1	-2	4	10	0	1	2	-4	-10	X_{i}	3 = t	frei	wani	lb
0	2	4	1	70	0	0	0	1	10	x	$_{1} =$	t	t t	
1	1	1	0	30	1	1	1	0	30	x_{i}	2 = 3	0 - 2i	t .	
0	1	2	-4	-10	0	1	2	0	30	x_{i}	=	1	t .	
0	2	4	1	70	0	0	0	1	10	χ_{a}	$_{4} = 1$	0		

Damit die Lösung sinnvoll ist, müssen alle $x_i \ge 0$ und ganzzahlig sein. Für x_4 ist das erfüllt, aus $x_1 = x_3 = t$ folgt, dass $t \ge 0$ und ganzzahlig sein muss. Aus $x_2 = 30 - 2t \ge 0$ folgt außerdem $t \le 15$.

Also ist t = 0, 1, 2, ..., 14, 15 möglich, es gibt 16 verschiedene Lösungen:

x_1	x_2	<i>x</i> ₃	χ_4	_	x_1	x_2	<i>x</i> ₃	x_4
0	30	0	10	•	8	14	8	10
1	28	1	10		9	12	9	10
2	26	2	10		10	10	10	10
3	24	3	10		11	8	11	10
4	22	4	10		12	6	12	10
5	20	5	10		13	4	13	10
6	18	6	10		14	2	14	10
7	16	7	10		15	0	15	10