Rolf Haftmann: Aufgabensammlung zur Höheren Mathematik mit ausführlichen Lösungen

(Hinweise zu den Quellen für die Aufgaben)

Aufgabe 6.135

Ein Chemiebetrieb produziert vier Waschmittel, wobei drei Rohstoffe in folgenden Mengen verbraucht werden:

	je Tonne			
	WM_1	WM_2	WM_3	WM_4
R_1 (in t)	1/2	0	1/2	1/4
R_2 (in t)	3/5	3/5	0	3/5
R_3 (in t)	0	1	3/5	3/5

Es sind 2t R_1 , 3t R_2 und 1t R_3 vorhanden. Welche Waschmittel müssen in welchen Mengen produziert werden, damit alle Rohstoffe vollständig verbraucht werden? Zeigen Sie die Eindeutigkeit der Lösung!

Lösung:

 x_1 bis x_4 seien die zu produzierenden Mengen der Waschmittel 1 bis 4 in Tonnen. Dann muss folgendes Gleichungssystem gelöst werden: $\frac{1}{2}x_1 + \frac{1}{4}x_4 = 2$

folgendes Gleichungssystem gelöst werden:
$$\frac{1}{2}x_1 + \frac{1}{2}x_3 + \frac{1}{4}x_4 = 2$$
$$\frac{3}{5}x_1 + \frac{3}{5}x_2 + \frac{3}{5}x_4 = 3$$
$$x_2 + \frac{3}{5}x_3 + \frac{3}{5}x_4 = 1$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Zur Vereinfachung der Rechnung werden die erste Gleichung mit 2 und die zweite Gleichung mit $\frac{5}{3}$ multipliziert und auf das so entstandene Gleichungssystem der Gaußsche Algorithmus angewandt:

Also gilt $x_1 = 4 - \frac{7}{16}x_4$, $x_2 = 1 - \frac{9}{16}x_4$, $x_3 = -\frac{1}{16}x_4$, aus Letzterem und der Nichtnegativitätsbedingung folgt $x_3 = x_4 = 0$ und damit $x_1 = 4$, $x_2 = 1$ als eindeutige Lösung. Somit müssen 4 t Waschmittel 1 und 1 t Waschmittel 2 produziert werden, während die Waschmittel 3 und 4 nicht zu produzieren sind.