Aufgabe 6.49

Für Vektoren $\vec{x}, \vec{y} \in \mathbb{R}^n$ gilt die Cauchy-Schwarzsche Ungleichung $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$.

- a) Welcher Zusammenhang besteht zwischen dieser Ungleichung und dem Wertebereich des Kosinus? Wann ist die Ungleichung mit dem Gleichheitszeichen erfüllt?
- b) Erläutern Sie die Ungleichung anhand der maximal möglichen Arbeit, die eine Kraft vom Betrag F in Abhängigkeit von ihrer Wirkungsrichtung in eine vorgegebene Richtung \vec{s} verrichten kann!

Lösung:

- a) Wegen $\varphi = \arccos \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$ ist $\cos \varphi = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$. Die Cauchy-Schwarzschen Ungleichung ist (für $\vec{x}, \vec{y} \neq \vec{0}$) somit gleichbedeutend zu $|\cos \varphi| = \frac{|\vec{x} \cdot \vec{y}|}{\|\vec{x}\| \|\vec{y}\|} \le 1$, d.h. zu $-1 \le \cos \varphi \le 1$.
 - $|\vec{x} \cdot \vec{y}| = ||\vec{x}|| \, ||\vec{y}||$ ist dabei äquivalent zu $|\cos \varphi| = 1$ und damit zu $\varphi = 0$ oder π . Das ist dann der Fall, wenn \vec{x} und \vec{y} gleich oder entgegengesetzt gerichtet sind. Die Cauchy-Schwarzsche Ungleichung ist somit genau dann mit dem Gleichheitszeichen erfüllt, wenn die Vektoren Vielfache voneinander sind.
- b) Für die Arbeit gilt $W = \vec{F} \cdot \vec{s}$. Die Cauchy-Schwarzsche Ungleichung $|\vec{F} \cdot \vec{s}| \le ||\vec{F}|| \, ||\vec{s}||$ besagt dann, dass für konstanten Betrag $F = ||\vec{F}||$ die Arbeit betragsmäßig am größten wird, wenn sie in oder entgegengesetzt zur vorgegebenen Richtung \vec{s} wirkt. Die maximal mögliche Arbeit wird dann verrichtet, wenn \vec{F} und \vec{s} gleich gerichtet sind, in diesem Falle gilt $W = ||\vec{F}|| \, ||\vec{s}||$.