Aufgabe 6.14

Beweisen Sie, dass jedes beliebige System von *n* linear unabhängigen Vektoren eines *n*-dimensionalen linearen Vektorraumes diesen Raum aufspannt, der Raum also lineare Hülle dieses Systems ist!

Lösung:

Jedes System linear unabhängiger Vektoren, das einen Vektorraum aufspannt, wird als Basis dieses Raumes bezeichnet. Es ist also zu zeigen, dass jedes beliebige System von n linear unabhängigen Vektoren eines n-dimensionalen linearen Raumes eines Basis dieses Raumes ist.

Indirekter Beweis:

 $\{\vec{x}_1,\ldots,\vec{x}_n\}\subseteq V$ sei linear unabhängig, aber keine Basis des n-dimensionalen linearen Vektorraumes V. Dann gibt es einen Vektor $\vec{x}_{n+1}\in V$, der nicht als Linearkombination von $\vec{x}_1,\ldots,\vec{x}_n$ darstellbar ist. Sei nun $\sum_{i=1}^{n+1}\lambda_i\vec{x}_i=\vec{0}$. Wäre $\lambda_{n+1}\neq 0$, so könnte man die Gleichung nach \vec{x}_{n+1} auflösen, \vec{x}_{n+1} wäre somit als Linearkombination von $\vec{x}_1,\ldots,\vec{x}_n$ darstellbar. Also muss $\lambda_{n+1}=0$ und damit $\sum_{i=1}^{n}\lambda_i\vec{x}_i=\vec{0}$ sein. Wegen der linearen Unabhängigkeit von $\{\vec{x}_1,\ldots,\vec{x}_n\}$ sind somit alle $\lambda_i=0$, das Vektorsystem $\{\vec{x}_1,\ldots,\vec{x}_{n+1}\}$ ist also linear unabhängig. Da die Dimension n die maximale Anzahl linear unabhängiger Vektoren des Raumes ist, ist dies ein Widerspruch.