Aufgabe 6.7

- a) Zeigen Sie, dass der Vektor $\begin{pmatrix} 3 \\ 8 \\ 17 \end{pmatrix}$ Linearkombination, der Vektor $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ hingegen keine Linearkombination der Vektoren $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$ ist!
- b) Wie kann man aus den unter a) genannten Vektoren eine Basis des Raumes \mathbb{R}^3 bilden? Geben Sie die Koordinaten der Vektoren $\begin{pmatrix} 3 \\ 8 \\ 17 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 5 \\ 16 \end{pmatrix}$ bezüglich dieser Basis an!

Lösung:

a)
$$\begin{pmatrix} 3 \\ 8 \\ 17 \end{pmatrix} = r \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$$
 $3 = r$
 $8 = 2r + s \implies s = 2$
 $17 = 3r + 4s$ stimmt für $r = 3$, $s = 2$,

also $\begin{pmatrix} 3 \\ 8 \\ 17 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$ Linearkombination.
$$\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = r \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$$
 $2 = r$
 $3 = 2r + s \implies s = -1$
 $1 = 3r + 4s$ nicht erfüllt wegen $3r + 4s = 2$,

es gibt also keine Parameter r, s, die das erfüllen, somit keine Linearkombination.

b)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$

sind linear unabhängig. Jedes System von 3 linear unabhängigen Vektoren des \mathbb{R}^3 ist Basis des \mathbb{R}^3 . Also handelt es sich bei den 3 Vektoren um eine Basis.

$$\begin{pmatrix} 3 \\ 8 \\ 17 \end{pmatrix} = r \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \text{ gilt offensichtlich für } r = 3, s = 2, t = 0.$$

$$\begin{pmatrix} 1 \\ 5 \\ 16 \end{pmatrix} = r \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

$$= 1 - 2t$$

$$5 = 2r + s + 3t \quad s = 5 - 2r - 3t$$

$$= 5 - 2 + 4t - 3t = 3 + t$$

$$16 = 3r + 4s + t \quad 16 = 3r + 4s + t$$

$$= 3 - 6t + 12 + 4t + t,$$

$$t = -1, r = 3, s = 2, \text{ also}$$

$$\begin{pmatrix} 1 \\ 5 \\ 16 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}.$$